scispace - formally typeset
Open AccessPosted Content

One-Shot Video Object Segmentation

TLDR
One-shot video object segmentation (OSVOS) as mentioned in this paper is based on a fully-convolutional neural network architecture that is able to successively transfer generic semantic information, learned on ImageNet, to the task of foreground segmentation, and finally to learning the appearance of a single annotated object of the test sequence.
Abstract
This paper tackles the task of semi-supervised video object segmentation, i.e., the separation of an object from the background in a video, given the mask of the first frame. We present One-Shot Video Object Segmentation (OSVOS), based on a fully-convolutional neural network architecture that is able to successively transfer generic semantic information, learned on ImageNet, to the task of foreground segmentation, and finally to learning the appearance of a single annotated object of the test sequence (hence one-shot). Although all frames are processed independently, the results are temporally coherent and stable. We perform experiments on two annotated video segmentation databases, which show that OSVOS is fast and improves the state of the art by a significant margin (79.8% vs 68.0%).

read more

Citations
More filters
Proceedings Article

Model-agnostic meta-learning for fast adaptation of deep networks

TL;DR: An algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning is proposed.
Proceedings ArticleDOI

Fast Online Object Tracking and Segmentation: A Unifying Approach

TL;DR: This method improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting their loss with a binary segmentation task, and operates online, producing class-agnostic object segmentation masks and rotated bounding boxes at 55 frames per second.
Journal ArticleDOI

Generalizing from a Few Examples: A Survey on Few-shot Learning

TL;DR: A thorough survey to fully understand Few-shot Learning (FSL), and categorizes FSL methods from three perspectives: data, which uses prior knowledge to augment the supervised experience; model, which used to reduce the size of the hypothesis space; and algorithm, which using prior knowledgeto alter the search for the best hypothesis in the given hypothesis space.
Posted Content

Generalizing from a Few Examples: A Survey on Few-Shot Learning

TL;DR: A thorough survey to fully understand Few-Shot Learning (FSL), and categorizes FSL methods from three perspectives: data, which uses prior knowledge to augment the supervised experience; model, which used to reduce the size of the hypothesis space; and algorithm, which using prior knowledgeto alter the search for the best hypothesis in the given hypothesis space.
Posted Content

The 2017 DAVIS Challenge on Video Object Segmentation

TL;DR: The scope of the benchmark, the main characteristics of the dataset, the evaluation metrics of the competition, and a detailed analysis of the results of the participants to the challenge are described.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Posted Content

Deep Residual Learning for Image Recognition

TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.