scispace - formally typeset
Open AccessProceedings Article

Permission re-delegation: attacks and defenses

Reads0
Chats0
TLDR
IPC Inspection prevents opportunities for permission redelegation by reducing an application's permissions after it receives communication from a less privileged application, and it is shown that it prevents the attacks found in the Android system applications.
Abstract
Modern browsers and smartphone operating systems treat applications as mutually untrusting, potentially malicious principals. Applications are (1) isolated except for explicit IPC or inter-application communication channels and (2) unprivileged by default, requiring user permission for additional privileges. Although inter-application communication supports useful collaboration, it also introduces the risk of permission redelegation. Permission re-delegation occurs when an application with permissions performs a privileged task for an application without permissions. This undermines the requirement that the user approve each application's access to privileged devices and data. We discuss permission re-delegation and demonstrate its risk by launching real-world attacks on Android system applications; several of the vulnerabilities have been confirmed as bugs. We discuss possible ways to address permission redelegation and present IPC Inspection, a new OS mechanism for defending against permission re-delegation. IPC Inspection prevents opportunities for permission redelegation by reducing an application's permissions after it receives communication from a less privileged application. We have implemented IPC Inspection for a browser and Android, and we show that it prevents the attacks we found in the Android system applications.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones

TL;DR: TaintDroid as mentioned in this paper is an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data by leveraging Android's virtualized execution environment.
Proceedings ArticleDOI

TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones

TL;DR: Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, this work found 68 instances of misappropriation of users' location and device identification information across 20 applications.
Proceedings ArticleDOI

Dissecting Android Malware: Characterization and Evolution

TL;DR: Systematize or characterize existing Android malware from various aspects, including their installation methods, activation mechanisms as well as the nature of carried malicious payloads reveal that they are evolving rapidly to circumvent the detection from existing mobile anti-virus software.
Proceedings Article

Hey, You, Get Off of My Market: Detecting Malicious Apps in Official and Alternative Android Markets

TL;DR: A permissionbased behavioral footprinting scheme to detect new samples of known Android malware families and a heuristics-based filtering scheme to identify certain inherent behaviors of unknown malicious families are proposed.
Proceedings ArticleDOI

PScout: analyzing the Android permission specification

TL;DR: An analysis of the permission system of the Android smartphone OS is performed and it is found that a trade-off exists between enabling least-privilege security with fine-grained permissions and maintaining stability of the permissions specification as the Android OS evolves.
References
More filters
Journal ArticleDOI

TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones

TL;DR: TaintDroid as mentioned in this paper is an efficient, system-wide dynamic taint tracking and analysis system capable of simultaneously tracking multiple sources of sensitive data by leveraging Android's virtualized execution environment.
Proceedings ArticleDOI

TaintDroid: an information-flow tracking system for realtime privacy monitoring on smartphones

TL;DR: Using TaintDroid to monitor the behavior of 30 popular third-party Android applications, this work found 68 instances of misappropriation of users' location and device identification information across 20 applications.

Integrity Considerations for Secure Computer Systems

K. J. Biba
TL;DR: The author identifies the integrity problems posed by a secure military computer utility and integrity policies addressing these problems are developed and their effectiveness evaluated.
Proceedings ArticleDOI

On lightweight mobile phone application certification

TL;DR: The Kirin security service for Android is proposed, which performs lightweight certification of applications to mitigate malware at install time and indicates that security configuration bundled with Android applications provides practical means of detecting malware.
Proceedings ArticleDOI

Analyzing inter-application communication in Android

TL;DR: This work examines Android application interaction and identifies security risks in application components and provides a tool, ComDroid, that detects application communication vulnerabilities and found 34 exploitable vulnerabilities.
Related Papers (5)