scispace - formally typeset
Open AccessJournal ArticleDOI

Plastics, the environment and human health: current consensus and future trends.

TLDR
Current understanding of the benefits and concerns surrounding the use of plastics are synthesized, and future priorities, challenges and opportunities are looked to.
Abstract
Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Plastic waste inputs from land into the ocean

TL;DR: This work combines available data on solid waste with a model that uses population density and economic status to estimate the amount of land-based plastic waste entering the ocean, which is estimated to be 275 million metric tons.
Journal ArticleDOI

Accumulation and fragmentation of plastic debris in global environments.

TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Journal ArticleDOI

Microplastics as contaminants in the marine environment: a review.

TL;DR: Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota.
Journal ArticleDOI

Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks

TL;DR: It is shown that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates.
References
More filters
Book

Green Chemistry: Theory and Practice

TL;DR: Green Chemistry: What is green chemistry? as discussed by the authors presents the principles of green chemistry and evaluates the impact of chemistry on the environment. But, it is not a complete overview of all of the issues involved in green chemistry.
Journal ArticleDOI

Lost at sea: where is all the plastic?

TL;DR: It is shown that microscopic plastic fragments and fibers are also widespread in the marine environment and may persist for centuries.
Journal ArticleDOI

Accumulation and fragmentation of plastic debris in global environments.

TL;DR: Global plastics production and the accumulation of plastic waste are documented, showing that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing and that the average size of plastic particles in the environment seems to be decreasing.
Journal ArticleDOI

The pollution of the marine environment by plastic debris: a review.

TL;DR: The deleterious effects of plastic debris on the marine environment were reviewed by bringing together most of the literature published so far on the topic, and a variety of approaches are urgently required to mitigate the problem.
Journal ArticleDOI

Polylactic Acid Technology

TL;DR: Polylactic acid is proving to be a viable alternative to petrochemical-based plastics for many applications It is produced from renewable resources and is biodegradable, decomposing to give H2O, CO2, and humus, the black material in soil as mentioned in this paper.
Related Papers (5)