scispace - formally typeset
Proceedings ArticleDOI

Pocket switched networks and human mobility in conference environments

Reads0
Chats0
TLDR
An experiment measuring forty-one humans' mobility is presented, in exhibiting a power-law distrbution for the time between node contacts, and the implications on the design of forwarding algorithms for PSN are discussed.
Abstract
Pocket Switched Networks (PSN) make use of both human mobility and local/global connectivity in order to transfer data between mobile users' devices. This falls under the Delay Tolerant Networking (DTN) space, focusing on the use of opportunistic networking. One key problem in PSN is in designing forwarding algorithms which cope with human mobility patterns. We present an experiment measuring forty-one humans' mobility at the Infocom 2005 conference. The results of this experiment are similar to our previous experiments in corporate and academic working environments, in exhibiting a power-law distrbution for the time between node contacts. We then discuss the implications of these results on the design of forwarding algorithms for PSN.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

The ONE simulator for DTN protocol evaluation

TL;DR: This paper presents the Opportunistic Networking Environment (ONE) simulator specifically designed for evaluating DTN routing and application protocols, and shows sample simulations to demonstrate the simulator's flexible support for DTN protocol evaluation.
Proceedings ArticleDOI

Bubble rap: social-based forwarding in delay tolerant networks

TL;DR: BUBBLE is designed and evaluated, a novel social-based forwarding algorithm that utilizes the aforementioned metrics to enhance delivery performance and empirically shows that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social- based forwarding SimBet algorithm.
Journal ArticleDOI

BUBBLE Rap: Social-Based Forwarding in Delay-Tolerant Networks

TL;DR: BUBBLE is designed and evaluated, a novel social-based forwarding algorithm that utilizes the aforementioned metrics to enhance delivery performance and empirically shows that BUBBLE can substantially improve forwarding performance compared to a number of previously proposed algorithms including the benchmarking history-based PROPHET algorithm, and social- based forwarding SimBet algorithm.
Journal ArticleDOI

Efficient routing in intermittently connected mobile networks: the multiple-copy case

TL;DR: A detailed exploration of the single-copy routing space is performed in order to identify efficient single- copy solutions that can be employed when low resource usage is critical, and can help improve the design of general routing schemes that use multiple copies.
Journal ArticleDOI

Impact of Human Mobility on Opportunistic Forwarding Algorithms

TL;DR: A simplified model based on the renewal theory is used to study how the parameters of the distribution impact the performance in terms of the delivery delay of well-founded opportunistic forwarding algorithms in the context of human-carried devices.
References
More filters
Proceedings ArticleDOI

Wireless sensor networks for habitat monitoring

TL;DR: An in-depth study of applying wireless sensor networks to real-world habitat monitoring and an instance of the architecture for monitoring seabird nesting environment and behavior is presented.
Proceedings ArticleDOI

A delay-tolerant network architecture for challenged internets

TL;DR: This work proposes a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources.
Proceedings ArticleDOI

Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet

TL;DR: The goal is to use the least energy, storage, and other resources necessary to maintain a reliable system with a very high `data homing' success rate and it is believed that the domain-centric protocols and energy tradeoffs presented here for ZebraNet will have general applicability in other wireless and sensor applications.
Proceedings ArticleDOI

Routing in a delay tolerant network

TL;DR: This work forms the delay-tolerant networking routing problem, where messages are to be moved end-to-end across a connectivity graph that is time-varying but whose dynamics may be known in advance, and proposes a framework for evaluating routing algorithms in such environments.
Proceedings ArticleDOI

Data MULEs: modeling a three-tier architecture for sparse sensor networks

TL;DR: This paper presents and analyzes an architecture to collect sensor data in sparse sensor networks that exploits the presence of mobile entities present in the environment and incorporates key system variables such as number of MULEs, sensors and access points.