scispace - formally typeset
Open AccessProceedings ArticleDOI

Wireless sensor networks for habitat monitoring

TLDR
An in-depth study of applying wireless sensor networks to real-world habitat monitoring and an instance of the architecture for monitoring seabird nesting environment and behavior is presented.
Abstract
We provide an in-depth study of applying wireless sensor networks to real-world habitat monitoring. A set of system design requirements are developed that cover the hardware design of the nodes, the design of the sensor network, and the capabilities for remote data access and management. A system architecture is proposed to address these requirements for habitat monitoring in general, and an instance of the architecture for monitoring seabird nesting environment and behavior is presented. The currently deployed network consists of 32 nodes on a small island off the coast of Maine streaming useful live data onto the web. The application-driven design exercise serves to identify important areas of further work in data sampling, communications, network retasking, and health monitoring.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Versatile low power media access for wireless sensor networks

TL;DR: B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC, and the need for flexible protocols to effectively realize energy efficient sensor network applications is illustrated.
Journal ArticleDOI

TAG: a Tiny AGgregation service for Ad-Hoc sensor networks

TL;DR: This work presents the Tiny AGgregation (TAG) service for aggregation in low-power, distributed, wireless environments, and discusses a variety of optimizations for improving the performance and fault tolerance of the basic solution.
Journal ArticleDOI

Secure routing in wireless sensor networks: attacks and countermeasures

TL;DR: This work proposes security goals for routing in sensor networks, shows how attacks against ad-hoc and peer-to-peer networks can be adapted into powerful attacks against sensors, and introduces two classes of novel attacks against sensor networks sinkholes and HELLO floods.
Journal ArticleDOI

Energy conservation in wireless sensor networks: A survey

TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Journal ArticleDOI

Context Aware Computing for The Internet of Things: A Survey

TL;DR: This paper surveys context awareness from an IoT perspective and addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT.
References
More filters
Journal Article

An Energy-Efficient MAC Protocol for Wireless Sensor Networks

TL;DR: S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Proceedings ArticleDOI

An energy-efficient MAC protocol for wireless sensor networks

TL;DR: S-MAC uses three novel techniques to reduce energy consumption and support self-configuration, and applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network.
Proceedings ArticleDOI

Next century challenges: scalable coordination in sensor networks

TL;DR: This paper believes that localized algorithms (in which simple local node behavior achieves a desired global objective) may be necessary for sensor network coordination.
Journal Article

Geography-informed Energy Conservation for Ad Hoc Routing

TL;DR: In this article, the authors proposed a geographical adaptive fidelity (GAF) algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and turning off unnecessary nodes, keeping a constant level of routing fidelity.
Proceedings ArticleDOI

Geography-informed energy conservation for Ad Hoc routing

TL;DR: A geographical adaptive fidelity algorithm that reduces energy consumption in ad hoc wireless networks by identifying nodes that are equivalent from a routing perspective and then turning off unnecessary nodes, keeping a constant level of routing fidelity.
Related Papers (5)