scispace - formally typeset
Open AccessPosted Content

Recent Advances in Convolutional Neural Networks

Reads0
Chats0
TLDR
This paper details the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation, and introduces various applications of convolutional neural networks in computer vision, speech and natural language processing.
Abstract
In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.

read more

Citations
More filters
Journal ArticleDOI

A survey on deep learning in medical image analysis

TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.
Journal ArticleDOI

Deep convolutional neural networks for image classification: A comprehensive review

TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
Journal ArticleDOI

Deep Learning for Generic Object Detection: A Survey

TL;DR: A comprehensive survey of the recent achievements in this field brought about by deep learning techniques, covering many aspects of generic object detection: detection frameworks, object feature representation, object proposal generation, context modeling, training strategies, and evaluation metrics.
Journal ArticleDOI

A systematic study of the class imbalance problem in convolutional neural networks

TL;DR: The effect of class imbalance on classification performance is detrimental; the method of addressing class imbalance that emerged as dominant in almost all analyzed scenarios was oversampling; and thresholding should be applied to compensate for prior class probabilities when overall number of properly classified cases is of interest.
Journal ArticleDOI

A survey of the recent architectures of deep convolutional neural networks

TL;DR: Deep Convolutional Neural Networks (CNNs) as mentioned in this paper are a special type of Neural Networks, which has shown exemplary performance on several competitions related to Computer Vision and Image Processing.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Related Papers (5)