scispace - formally typeset
Journal ArticleDOI

Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2.

TLDR
Experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO2 to the CO2.- intermediate and hence enhances CO2 electroreduction activity.
Abstract
The design of active, selective, and stable CO2 reduction electrocatalysts is still challenging. A series of atomically dispersed Co catalysts with different nitrogen coordination numbers were prepared and their CO2 electroreduction catalytic performance was explored. The best catalyst, atomically dispersed Co with two-coordinate nitrogen atoms, achieves both high selectivity and superior activity with 94 % CO formation Faradaic efficiency and a current density of 18.1 mA cm-2 at an overpotential of 520 mV. The CO formation turnover frequency reaches a record value of 18 200 h-1 , surpassing most reported metal-based catalysts under comparable conditions. Our experimental and theoretical results demonstrate that lower a coordination number facilitates activation of CO2 to the CO2.- intermediate and hence enhances CO2 electroreduction activity.

read more

Citations
More filters
Journal ArticleDOI

Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications

TL;DR: In this article, the authors highlight and summarize recent advances in wet-chemistry synthetic methods for single-atom catalysts with special emphasis on how to achieve the stabilization of single metal atoms against migration and agglomeration.
Journal ArticleDOI

Carbon capture and conversion using metal–organic frameworks and MOF-based materials

TL;DR: This review provides a comprehensive account of significant progress in the design and synthesis of MOF-based materials, including MOFs, MOF composites and MOF derivatives, and their application to carbon capture and conversion.
Journal ArticleDOI

State of the Art and Prospects in Metal-Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis.

TL;DR: This review first briefly summarizes this background of MOF nanoparticle catalysis and then comprehensively reviews the fast-growing literature reported during the last years.
Journal ArticleDOI

Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO.

TL;DR: Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites, whereas non–precious metal catalysts have shown low to modest activity.
Journal ArticleDOI

Designing materials for electrochemical carbon dioxide recycling

TL;DR: In this article, the authors describe progress and identify mechanistic questions and performance metrics for catalysts that can enable carbon-neutral renewable energy storage and utilization, and discuss design principles for improved activity and selectivity.
References
More filters
Journal ArticleDOI

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks

TL;DR: Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvents.
Journal ArticleDOI

High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.

TL;DR: Members of a selection of zeolitic imidazolate frameworks have high thermal stability and chemical stability in refluxing organic and aqueous media, and they exhibit unusual selectivity for CO2 capture from CO2/CO mixtures and extraordinary capacity for storing CO2.
Journal ArticleDOI

Single-atom catalysts: a new frontier in heterogeneous catalysis.

TL;DR: Recent advances in preparation, characterization, and catalytic performance of SACs are highlighted, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene, offering the potential for applications in a variety of industrial chemical reactions.
Journal ArticleDOI

Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

TL;DR: Modular optimization of covalent organic frameworks (COFs) is reported, in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO.
Journal ArticleDOI

Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts

TL;DR: Durability tests revealed that the Co single atoms exhibit outstanding chemical stability during electrocatalysis and thermal stability that resists sintering at 900 °C, which could facilitate new discoveries at the atomic scale in condensed materials.
Related Papers (5)