scispace - formally typeset
Open AccessBook ChapterDOI

Serpent: A New Block Cipher Proposal

TLDR
In this paper, the DES S-boxes are used in a new structure that simultaneously allows a more rapid avalanche, a more efficient bitslice implementation, and an easy analysis that enables them to demonstrate its security against all known types of attack.
Abstract
We propose a new block cipher as a candidate for the Advanced Encryption Standard. Its design is highly conservative, yet still allows a very efficient implementation. It uses the well-understood DES S-boxes in a new structure that simultaneously allows a more rapid avalanche, a more efficient bitslice implementation, and an easy analysis that enables us to demonstrate its security against all known types of attack. With a 128-bit block size and a 256-bit key, it is almost as fast as DES on a wide range of platforms, yet conjectured to be at least as secure as three-key triple-DES.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

PRESENT: An Ultra-Lightweight Block Cipher

TL;DR: An ultra-lightweight block cipher, present, which is competitive with today's leading compact stream ciphers and suitable for extremely constrained environments such as RFID tags and sensor networks.
Journal Article

PRESENT: An Ultra-Lightweight Block Cipher

TL;DR: In this paper, the authors describe an ultra-lightweight block cipher, present, which is suitable for extremely constrained environments such as RFID tags and sensor networks, but it is not suitable for very large networks such as sensor networks.

Serpent: A Proposal for the Advanced Encryption Standard

TL;DR: A new block cipher is proposed that uses S-boxes similar to those of DES in a new structure that simultaneously allows a more rapid avalanche, a more efficient bitslice implementation, and an easy analysis that enables it to be more secure than three-key triple-DES.

Twofish : A 128-bit block cipher

TL;DR: The design of both the round function and the key schedule permits a wide variety of tradeoffs between speed, software size, key setup time, gate count, and memory.
Book ChapterDOI

Cache-collision timing attacks against AES

TL;DR: The most powerful attack has been shown under optimal conditions to reliably recover a full 128-bit AES key with 213 timing samples, an improvement of almost four orders of magnitude over the best previously published attacks of this type.
References
More filters
Book ChapterDOI

Linear cryptanalysis method for DES cipher

TL;DR: A new method is introduced for cryptanalysis of DES cipher, which is essentially a known-plaintext attack, that is applicable to an only-ciphertext attack in certain situations.
Book ChapterDOI

Differential Fault Analysis of Secret Key Cryptosystems

TL;DR: This work states that this attack is applicable only to public key cryptosystems such as RSA, and not to secret key algorithms such as the Data Encryption Standard (DES).
Proceedings Article

On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract).

TL;DR: A sound pressure level meter adapted for use in monitoring noise levels, particularly for use by law enforcement agencies wherein the device includes means for providing a logarithmic indication of the root mean square value of ambient sound pressure levels.
Book ChapterDOI

On the importance of checking cryptographic protocols for faults

TL;DR: In this article, the authors present a theoretical model for breaking various cryptographic schemes by taking advantage of random hardware faults, including RSA and Rabin signatures, and also show how various authentication protocols, such as Fiat-Shamir and Schnorr, can be broken using hardware faults.

Tamper resistance: a cautionary note

TL;DR: It is concluded that trusting tamper resistance is problematic; smartcards are broken routinely, and even a device that was described by a government signals agency as 'the most secure processor generally available' turns out to be vulnerable.