scispace - formally typeset
Open AccessJournal ArticleDOI

Sparse PCA: Optimal rates and adaptive estimation

T. Tony Cai, +2 more
- 01 Dec 2013 - 
- Vol. 41, Iss: 6, pp 3074-3110
Reads0
Chats0
TLDR
In this paper, the authors considered both minimax and adaptive estimation of the principal subspace in the high dimensional setting and established the optimal rates of convergence for estimating the subspace which are sharp with respect to all the parameters, thus providing a complete characterization of the difficulty of the estimation problem in terms of the convergence rate.
Abstract
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. This paper considers both minimax and adaptive estimation of the principal subspace in the high dimensional setting. Under mild technical conditions, we first establish the optimal rates of convergence for estimating the principal subspace which are sharp with respect to all the parameters, thus providing a complete characterization of the difficulty of the estimation problem in term of the convergence rate. The lower bound is obtained by calculating the local metric entropy and an application of Fano’s lemma. The rate optimal estimator is constructed using aggregation, which, however, might not be computationally feasible. We then introduce an adaptive procedure for estimating the principal subspace which is fully data driven and can be computed efficiently. It is shown that the estimator attains the optimal rates of convergence simultaneously over a large collection of the parameter spaces. A key idea in our construction is a reduction scheme which reduces the sparse PCA problem to a high-dimensional multivariate regression problem. This method is potentially also useful for other related problems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation

TL;DR: Minimax rates of convergence for estimating several classes of structured covariance and precision matrices, including bandable, Toeplitz, and sparse covariance matrices as well as sparse precisionMatrices, are given under the spectral norm loss.
Journal ArticleDOI

Optimal detection of sparse principal components in high dimension

TL;DR: In this article, a finite sample analysis of the detection levels for sparse principal components of a high-dimensional covariance matrix is performed, based on a sparse eigenvalue statistic.
Journal ArticleDOI

Minimax bounds for sparse PCA with noisy high-dimensional data

TL;DR: A lower bound on the minimax risk of estimators under the l2 loss is established, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors.
Journal ArticleDOI

Random matrix theory in statistics: A review

TL;DR: An overview of random matrix theory is given with the objective of highlighting the results and concepts that have a growing impact in the formulation and inference of statistical models and methodologies.
Proceedings Article

Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA

TL;DR: A novel convex relaxation of sparse principal subspace estimation based on the convex hull of rank-d projection matrices (the Fantope) is proposed and implies the near-optimality of DSPCA (d'Aspremont et al. [1]) even when the solution is not rank 1.
References
More filters
Book

Elements of information theory

TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Book

Matrix Analysis

TL;DR: In this article, the authors present results of both classic and recent matrix analyses using canonical forms as a unifying theme, and demonstrate their importance in a variety of applications, such as linear algebra and matrix theory.
Book

An Introduction to Multivariate Statistical Analysis

TL;DR: In this article, the distribution of the Mean Vector and the Covariance Matrix and the Generalized T2-Statistic is analyzed. But the distribution is not shown to be independent of sets of Variates.
Journal ArticleDOI

Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization

TL;DR: It is shown that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum-rank solution can be recovered by solving a convex optimization problem, namely, the minimization of the nuclear norm over the given affine space.
Related Papers (5)