scispace - formally typeset
Open accessProceedings ArticleDOI: 10.1109/CVPR46437.2021.00083

Spatial-Phase Shallow Learning: Rethinking Face Forgery Detection in Frequency Domain

02 Mar 2021-pp 772-781
Abstract: The remarkable success in face forgery techniques has received considerable attention in computer vision due to security concerns. We observe that up-sampling is a necessary step of most face forgery techniques, and cumulative up-sampling will result in obvious changes in the frequency domain, especially in the phase spectrum. According to the property of natural images, the phase spectrum preserves abundant frequency components that provide extra information and complement the loss of the amplitude spectrum. To this end, we present a novel Spatial-Phase Shallow Learning (SPSL) method, which combines spatial image and phase spectrum to capture the up-sampling artifacts of face forgery to improve the transferability, for face forgery detection. And we also theoretically analyze the validity of utilizing the phase spectrum. Moreover, we notice that local texture information is more crucial than high-level semantic information for the face forgery detection task. So we reduce the receptive fields by shallowing the network to suppress high-level features and focus on the local region. Extensive experiments show that SPSL can achieve the state-of-the-art performance on cross-datasets evaluation as well as multi-class classification and obtain comparable results on single dataset evaluation.

... read more

Topics: Frequency domain (50%)

6 results found

Open accessPosted Content
Guangyao Chen1, Peixi Peng1, Li Ma, Jia Li2  +2 moreInstitutions (2)
Abstract: Recently, the generalization behavior of Convolutional Neural Networks (CNN) is gradually transparent through explanation techniques with the frequency components decomposition. However, the importance of the phase spectrum of the image for a robust vision system is still ignored. In this paper, we notice that the CNN tends to converge at the local optimum which is closely related to the high-frequency components of the training images, while the amplitude spectrum is easily disturbed such as noises or common corruptions. In contrast, more empirical studies found that humans rely on more phase components to achieve robust recognition. This observation leads to more explanations of the CNN's generalization behaviors in both robustness to common perturbations and out-of-distribution detection, and motivates a new perspective on data augmentation designed by re-combing the phase spectrum of the current image and the amplitude spectrum of the distracter image. That is, the generated samples force the CNN to pay more attention to the structured information from phase components and keep robust to the variation of the amplitude. Experiments on several image datasets indicate that the proposed method achieves state-of-the-art performances on multiple generalizations and calibration tasks, including adaptability for common corruptions and surface variations, out-of-distribution detection, and adversarial attack.

... read more

Open accessPosted Content
Dong-Keon Kim1, Kwangsu Kim1Institutions (1)
Abstract: This paper presents a generalized and robust face manipulation detection method based on the edge region features appearing in images. Most contemporary face synthesis processes include color awkwardness reduction but damage the natural fingerprint in the edge region. In addition, these color correction processes do not proceed in the non-face background region. We also observe that the synthesis process does not consider the natural properties of the image appearing in the time domain. Considering these observations, we propose a facial forensic framework that utilizes pixel-level color features appearing in the edge region of the whole image. Furthermore, our framework includes a 3D-CNN classification model that interprets the extracted color features spatially and temporally. Unlike other existing studies, we conduct authenticity determination by considering all features extracted from multiple frames within one video. Through extensive experiments, including real-world scenarios to evaluate generalized detection ability, we show that our framework outperforms state-of-the-art facial manipulation detection technologies in terms of accuracy and robustness.

... read more

Topics: Color correction (56.99%), Feature extraction (53%)

Open accessPosted Content
Chenqi Kong1, Baoliang Chen1, Haoliang Li1, Shiqi Wang1  +2 moreInstitutions (2)
Abstract: The technological advancements of deep learning have enabled sophisticated face manipulation schemes, raising severe trust issues and security concerns in modern society. Generally speaking, detecting manipulated faces and locating the potentially altered regions are challenging tasks. Herein, we propose a conceptually simple but effective method to efficiently detect forged faces in an image while simultaneously locating the manipulated regions. The proposed scheme relies on a segmentation map that delivers meaningful high-level semantic information clues about the image. Furthermore, a noise map is estimated, playing a complementary role in capturing low-level clues and subsequently empowering decision-making. Finally, the features from these two modules are combined to distinguish fake faces. Extensive experiments show that the proposed model achieves state-of-the-art detection accuracy and remarkable localization performance.

... read more

Open accessPosted Content
Abstract: In this paper, we propose to utilize Automated Machine Learning to automatically search architecture for deepfake detection. Unlike previous works, our method benefits from the superior capability of deep learning while relieving us from the high labor cost in the manual network design process. It is experimentally proved that our proposed method not only outperforms previous non-deep learning methods but achieves comparable or even better prediction accuracy compared to previous deep learning methods. To improve the generality of our method, especially when training data and testing data are manipulated by different methods, we propose a multi-task strategy in our network learning process, making it estimate potential manipulation regions in given samples as well as predict whether the samples are real. Comparing to previous works using similar strategies, our method depends much less on prior knowledge, such as no need to know which manipulation method is utilized and whether it is utilized already. Extensive experimental results on two benchmark datasets demonstrate the effectiveness of our proposed method on deepfake detection.

... read more

Topics: Deep learning (52%), Benchmark (computing) (50%)

Open accessPosted Content
Abstract: The rapid progress in the ease of creating and spreading ultra-realistic media over social platforms calls for an urgent need to develop a generalizable deepfake detection technique. It has been observed that current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos. Inspired by this observation, in this paper, we present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation for classifying \textit{deepfakes}. MD-CSDNetwork is a novel cross-stitched network with two parallel branches carrying the spatial and frequency information, respectively. We hypothesize that these multi-domain input data streams can be considered as related supervisory signals. The supervision from both branches ensures better performance and generalization. Further, the concept of cross-stitch connections is utilized where they are inserted between the two branches to learn an optimal combination of domain-specific and shared representations from other domains automatically. Extensive experiments are conducted on the popular benchmark dataset namely FaceForeniscs++ for forgery classification. We report improvements over all the manipulation types in FaceForensics++ dataset and comparable results with state-of-the-art methods for cross-database evaluation on the Celeb-DF dataset and the Deepfake Detection Dataset.

... read more

Topics: Discriminative model (55%)


47 results found

Open accessProceedings ArticleDOI: 10.1109/CVPR.2016.90
Kaiming He1, Xiangyu Zhang1, Shaoqing Ren1, Jian Sun1Institutions (1)
27 Jun 2016-
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

... read more

Topics: Deep learning (53%), Residual (53%), Convolutional neural network (53%) ... show more

93,356 Citations

Open accessProceedings Article
Diederik P. Kingma1, Jimmy Ba2Institutions (2)
01 Jan 2015-
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

... read more

Topics: Stochastic optimization (63%), Convex optimization (54%), Rate of convergence (52%) ... show more

78,539 Citations

Open accessJournal ArticleDOI: 10.3156/JSOFT.29.5_177_2
Ian Goodfellow1, Jean Pouget-Abadie1, Mehdi Mirza1, Bing Xu1  +4 moreInstitutions (2)
08 Dec 2014-
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

... read more

Topics: Generative model (64%), Discriminative model (54%), Approximate inference (53%) ... show more

29,410 Citations

Open accessJournal Article
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

... read more

Topics: Sammon mapping (57.99%), t-distributed stochastic neighbor embedding (56.99%), Isomap (56.99%) ... show more

22,120 Citations

Open accessProceedings ArticleDOI: 10.1109/CVPR.2017.195
François Chollet1Institutions (1)
21 Jul 2017-
Abstract: We present an interpretation of Inception modules in convolutional neural networks as being an intermediate step in-between regular convolution and the depthwise separable convolution operation (a depthwise convolution followed by a pointwise convolution). In this light, a depthwise separable convolution can be understood as an Inception module with a maximally large number of towers. This observation leads us to propose a novel deep convolutional neural network architecture inspired by Inception, where Inception modules have been replaced with depthwise separable convolutions. We show that this architecture, dubbed Xception, slightly outperforms Inception V3 on the ImageNet dataset (which Inception V3 was designed for), and significantly outperforms Inception V3 on a larger image classification dataset comprising 350 million images and 17,000 classes. Since the Xception architecture has the same number of parameters as Inception V3, the performance gains are not due to increased capacity but rather to a more efficient use of model parameters.

... read more

5,200 Citations

No. of citations received by the Paper in previous years
Network Information