scispace - formally typeset
Open AccessJournal ArticleDOI

Turbulence and star formation in molecular clouds

Richard B. Larson
- 01 Apr 1981 - 
- Vol. 194, Iss: 4, pp 809-826
Reads0
Chats0
About
This article is published in Monthly Notices of the Royal Astronomical Society.The article was published on 1981-04-01 and is currently open access. It has received 2529 citations till now. The article focuses on the topics: Star formation & Protostar.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Galactic stellar and substellar initial mass function

TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Journal ArticleDOI

Theory of Star Formation

TL;DR: In this paper, an overall theoretical framework and the observations that motivate it are outlined, outlining the key dynamical processes involved in star formation, including turbulence, magnetic fields, and self-gravity.
Journal ArticleDOI

The CO-to-H2 Conversion Factor

TL;DR: In this article, the authors review the theoretical underpinning, techniques, and results of efforts to estimate the CO-to-H2 conversion factor in different environments, and recommend a conversion factor XCO = 2×10 20 cm −2 (K km s −1 ) −1 with ±30% uncertainty.
Journal ArticleDOI

Control of star formation by supersonic turbulence

TL;DR: A review of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives, is given in this paper.
Journal ArticleDOI

Toward Understanding Massive Star Formation

TL;DR: In this article, a basic description of the collapse of a massive molecular core and a critical discussion of the three competing concepts of massive star formation are presented, including monolithic collapse in isolated cores, competitive accretion in a protocluster environment, stellar collisions and mergers in very dense systems.
Related Papers (5)