scispace - formally typeset
Open AccessJournal ArticleDOI

Variations in the polar cap area during two substorm cycles

Reads0
Chats0
TLDR
In this article, the authors employed observations from several sources to determine the location of the polar cap bound-ary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified.
Abstract
This study employs observations from several sources to determine the location of the polar cap bound- ary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral im- ages from the Ultraviolet Imager (UVI) instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP) and National Oceanographic and Atmospheric Administration (NOAA) satellites, and the Fast Auroral SnapshoT (FAST) spacecraft. Changes in the open flux content of the mag- netosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, al- lowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and de- creases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to de- crease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap bound- ary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times sup- ports this finding.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Statistics of geomagnetic storms: Global simulations perspective

TL;DR: In this article , the authors present results of 131 geomagnetic storm simulations using the University of Michigan Space Weather Modeling Framework Geospace configuration, and show that the simulation produces geomagnetic index distributions similar to those observed, and that their relationship to the solar wind driver is similar to that observed.
Journal ArticleDOI

The relationship between interhemispheric asymmetries in polar ionospheric convection and the magnetic field line footpoint displacement field

TL;DR: In this paper , a 2D displacement vector field is estimated from average patterns of ionospheric convection using the Weimer et al. (J. Geophys. Res., 2005a, 110, A05306) model.
Book ChapterDOI

Hermean Magnetosphere-Solar Wind Interaction

TL;DR: In this article, the authors outline the predictions based on their experience at Earth and what effects can drastically change this picture and what changes can be found in the Hermean magnetosphere of Mercury.
Journal ArticleDOI

Universal Time variations in the magnetosphere

TL;DR: In this article , the effect of Earth's magnetic axis not being aligned with the rotational axis on the geomagnetic field has been investigated in terms of the dipole tilt effect on ionospheric conductivities and the stability of the near Earth tail.
Dissertation

Asymmetric Ionospheric Equivalent Currents at Magnetic Conjugate Points

Abstract: Faculty of Mathematics and Natural Science Birkeland Center for Space Science
References
More filters
Journal ArticleDOI

Empirical high-latitude electric field models

TL;DR: In this paper, large-scale revisions of the OGO 6 dawn-dusk measurement models are made, showing that the deformations of the two-cell patterns lead to sunward convection in dayside polar regions, while maintaining the integrity of the night-side convection pattern.
Journal ArticleDOI

DARN/SUPERDARN : A global view of the dynamics of high-latitude convection

TL;DR: The Dual Auroral Radar Network (DARN) is a global-scale network of HF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere as mentioned in this paper.
Journal ArticleDOI

Initial ISEE Magnetometer Results: Magnetopause Observations (Article published in the special issues: Advances in Magnetospheric Physics with GEOS- 1 and ISEE - 1 and 2.)

Abstract: The magnetic field profiles across the magnetopause obtained by the ISEE-1 and -2 spacecraft separated by only a few hundred kilometers are examined for four passes. During one of these passes the magnetosheath field was northward, during one it was slightly southward, and in two it was strongly southward. The velocity of the magnetopause is found to be highly irregular ranging from 4 to over 40 km s-1 and varying in less time than it takes for a spacecraft to cross the boundary. Thicknesses ranged from 500 to over 1000 km.Clear evidence for reconnection is found in the data when the magnetosheath field is southward. However, this evidence is not in the form of classic rotational discontinuity signatures. Rather, it is in the form of flux transfer events, in which reconnection starts and stops in a matter of minutes or less, resulting in the ripping off of flux tubes from the magnetosphere. Evidence for flux transfer events can be found both in the magnetosheath and the outer magnetosphere due to their alteration of the boundary normal. In particular, their presence at the time of magnetopause crossings invalidates the usual 2-dimensional analysis of magnetopause structure. Not only are these flux transfer events probably the dominant means of reconnection on the magnetopause, but they may also serve as an important source of magnetopause oscillations, and hence of pulsations in the outer magnetosphere. On two days the flux transfer rate was estimated to be of the order of 2 × 1012 Maxwells per second by the flux transfer events detected at ISEE. Events not detectable at ISEE and continued reconnection after passage of an FTE past ISEE could have resulted in an even greater reconnection rate at these times.
Book ChapterDOI

Initial ISEE magnetometer results - Magnetopause observations

TL;DR: The magnetic field profiles across the magnetopause obtained by the ISEE-1 and -2 spacecraft separated by only a few hundred kilometers are examined for four passes as discussed by the authors, during which the magnetosheath field was northward, during one pass it was slightly southward, and in two it was strongly southward.
Journal ArticleDOI

ISEE observations of flux transfer events at the dayside magnetopause

TL;DR: In this paper, the authors examined magnetic field measurements from the ISEE 1 and 2 spacecraft in the vicinity of the magnetopause near local noon on a typical pass when the magnetosheath field is southward.
Related Papers (5)