scispace - formally typeset
Search or ask a question

Showing papers in "Annales Geophysicae in 2003"


Journal ArticleDOI
TL;DR: The Mediterranean Forecasting system Pilot Project has concluded its activities in 2001, achieving the following goals: 1. Realization of the first high-frequency (twice a month) Voluntary Observing Ship (VOS) system for the Mediterranean Sea with XBT profiles for the upper thermocline (0-700 m) and 12 n.m. along track nominal resolution; 2. Analysis and NRT dissemination of high quality along track Sea Level Anomaly (SLA), Sea Surface Temperature (SST) data from satellite sensors to be assimilated into the forecasting model; 4
Abstract: . The Mediterranean Forecasting system Pilot Project has concluded its activities in 2001, achieving the following goals: 1. Realization of the first high-frequency (twice a month) Voluntary Observing Ship (VOS) system for the Mediterranean Sea with XBT profiles for the upper thermocline (0–700 m) and 12 n.m. along track nominal resolution; 2. Realization of the first Mediterranean Multidisciplinary Moored Array (M3A) system for the Near-Real-Time (NRT) acquisition of physical and biochemical observations. The actual observations consists of: air-sea interaction parameters, upper thermocline (0–500 m) temperature, salinity, oxygen and currents, euphotic zone (0–100 m) chlorophyll, nutrients, Photosinthetically Available Radiation (PAR) and turbidity; 3. Analysis and NRT dissemination of high quality along track Sea Level Anomaly (SLA), Sea Surface Temperature (SST) data from satellite sensors to be assimilated into the forecasting model; 4. Assembly and implementation of a multivariate Reduced Order Optimal Interpolation scheme (ROOI) for assimilation in NRT of all available data, in particular, SLA and VOS-XBT profiles; 5. Demonstration of the practical feasibility of NRT ten day forecasts at the Mediterranean basin scale with resolution of 0.125° in latitude and longitude. The analysis or nowcast is done once a week; 6. Development and implementation of nested regional (5 km) and shelf (2–3 km) models to simulate the seasonal variability. Four regional and nine shelf models were implemented successfully, nested within the forecasting model. The implementation exercise was carried out in different region/shelf dynamical regimes and it was demonstrated that one-way nesting is practical and accurate; 7. Validation and calibration of a complex ecosystem model in data reach shelf areas, to prepare for forecasting in a future phase. The same ecosystem model is capable of reproducing the major features of the primary producers’ carbon cycle in different regions and shelf areas. The model simulations were compared with the multidisciplinary M3A buoy observations and assimilation techniques were developed for the biochemical data. This paper overviews the methodological aspects of the research done, from the NRT observing system to the forecasting/modelling components and to the extensive validation/calibration experiments carried out with regional/shelf and ecosystem models. Key words. Oceanography: general (ocean prediction; instruments and techniques) Oceanography: physical (currents)

296 citations


Journal ArticleDOI
TL;DR: In this article, a method to derive the ionospheric total electron content (TEC) and to estimate the biases of GPS satellites and dual frequency receivers using the GPS Earth Observation Network (GEONET) in Japan is presented.
Abstract: . This paper presents a method to derive the ionospheric total electron content (TEC) and to estimate the biases of GPS satellites and dual frequency receivers using the GPS Earth Observation Network (GEONET) in Japan. Based on the consideration that the TEC is uniform in a small area, the method divides the ionosphere over Japan into 32 meshes. The size of each mesh is 2° by 2° in latitude and longitude, respectively. By assuming that the TEC is identical at any point within a given mesh and the biases do not vary within a day, the method arranges unknown TECs and biases with dual GPS data from about 209 receivers in a day unit into a set of equations. Then the TECs and the biases of satellites and receivers were determined by using the least-squares fitting technique. The performance of the method is examined by applying it to geomagnetically quiet days in various seasons, and then comparing the GPS-derived TEC with ionospheric critical frequencies (foF2). It is found that the biases of GPS satellites and most receivers are very stable. The diurnal and seasonal variation in TEC and foF2 shows a high degree of conformity. The method using a highly dense receiver network like GEONET is not always applicable in other areas. Thus, the paper also proposes a simpler and faster method to estimate a single receiver’s bias by using the satellite biases determined from GEONET. The accuracy of the simple method is examined by comparing the receiver biases determined by the two methods. Larger deviation from GEONET derived bias tends to be found in the receivers at lower ( Key words. Ionosphere (mid-latitude ionosphere; instruments and techniques) – Radio science (radio-wave propagation)

245 citations


Journal ArticleDOI
TL;DR: In this paper, a three-axis search coil magnetometer is used to measure magnetic fluctuations at frequencies up to 4 kHz, a waveform unit (up to either 10 Hz or 180 Hz) and a Spectrum Analyser (upto 4 kHz) for the Spatio Temporal Analysis of Field Fluctuations (STAFF) experiment.
Abstract: . The Spatio Temporal Analysis of Field Fluctuations (STAFF) experiment is one of the five experiments, which constitute the Cluster Wave Experiment Consortium (WEC). STAFF consists of a three-axis search coil magnetometer to measure magnetic fluctuations at frequencies up to 4 kHz, a waveform unit (up to either 10 Hz or 180 Hz) and a Spectrum Analyser (up to 4 kHz). The Spectrum Analyser combines the 3 magnetic components of the waves with the two electric components measured by the Electric Fields and Waves experiment (EFW) to calculate in real time the 5 × 5 Hermitian cross-spectral matrix at 27 frequencies distributed logarithmically in the frequency range 8 Hz to 4 kHz. The time resolution varies between 0.125 s and 4 s. The first results show the capabilities of the experiment, with examples in different regions of the magnetosphere-solar wind system that were encountered by Cluster at the beginning of its operational phase. First results obtained by the use of some of the tools that have been prepared specifically for the Cluster mission are described. The characterisation of the motion of the bow shock between successive crossings, using the reciprocal vector method, is given. The full characterisation of the waves analysed by the Spectrum Analyser, thanks to a dedicated program called PRASSADCO, is applied to some events; in particular a case of very confined electromagnetic waves in the vicinity of the equatorial region is presented and discussed. Key words. Magnetospheric physics (magnetopause, cusp and boundary layer) – Space plasma physics (waves and instabilities; shock waves)

226 citations


Journal ArticleDOI
TL;DR: In this article, the authors employed observations from several sources to determine the location of the polar cap bound-ary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified.
Abstract: This study employs observations from several sources to determine the location of the polar cap bound- ary, or open/closed field line boundary, at all local times, allowing the amount of open flux in the magnetosphere to be quantified. These data sources include global auroral im- ages from the Ultraviolet Imager (UVI) instrument on board the Polar spacecraft, SuperDARN HF radar measurements of the convection flow, and low altitude particle measurements from Defense Meteorological Satellite Program (DMSP) and National Oceanographic and Atmospheric Administration (NOAA) satellites, and the Fast Auroral SnapshoT (FAST) spacecraft. Changes in the open flux content of the mag- netosphere are related to the rate of magnetic reconnection occurring at the magnetopause and in the magnetotail, al- lowing us to estimate the day- and nightside reconnection voltages during two substorm cycles. Specifically, increases in the polar cap area are found to be consistent with open flux being created when the IMF is oriented southwards and low-latitude magnetopause reconnection is ongoing, and de- creases in area correspond to open flux being destroyed at substorm breakup. The polar cap area can continue to de- crease for 100 min following the onset of substorm breakup, continuing even after substorm-associated auroral features have died away. An estimate of the dayside reconnection voltage, determined from plasma drift measurements in the ionosphere, indicates that reconnection can take place at all local times along the dayside portion of the polar cap bound- ary, and hence presumably across the majority of the dayside magnetopause. The observation of ionospheric signatures of bursty reconnection over a wide extent of local times sup- ports this finding.

211 citations


Journal ArticleDOI
TL;DR: In this paper, the solar diurnal and semidiurnal tide oscillations in surface pressure are extracted from the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF).
Abstract: . The solar diurnal and semidiurnal tidal oscillations in surface pressure are extracted from the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF). For the semidiurnal tide this involves a special temporal interpolation, following Van den Dool et al. (1997). The resulting tides are compared with a "ground truth" tide data set, a compilation of well-determined tide estimates deduced from many long time series of station barometer measurements. These comparisons show that the ECMWF (analysis) tides are significantly more accurate than the tides deduced from two other widely available reanalysis products. Spectral analysis of ECMWF pressure series shows that the tides consist of sharp central peaks with modulating sidelines at integer multiples of 1 cycle/year, superimposed on a broad cusp of stochastic energy. The integrated energy in the cusp dominates that of the side-lines. This complicates the development of a simple empirical model that can characterize the full temporal variability of the tides. Key words. Meteorology and atmospheric dynamics (waves and tides)

200 citations


Journal ArticleDOI
TL;DR: In this paper, a modelling system for the Adriatic Sea has been built within the framework of the Mediterranean Forecast- ing System Pilot Project (MFSP), which consists of a hierarchy of three numerical models coupled among each other by simple one-way, off-line nest- ing techniques, to downscale the larger scale flow field to highly resolved coastal scale fields.
Abstract: A modelling system for the Adriatic Sea has been built within the framework of the Mediterranean Forecast- ing System Pilot Project The modelling system consists of a hierarchy of three numerical models (whole Mediter- ranean Sea, whole Adriatic Sea, Northern Adriatic Basin) coupled among each other by simple one-way, off-line nest- ing techniques, to downscale the larger scale flow field to highly resolved coastal scale fields Numerical simulations have been carried out under climatological surface forc- ing Simulations were aimed to assess the effectiveness of the nesting techniques and the skill of the system to repro- duce known features of the Adriatic Sea circulation phe- nomenology (main circulation features, dense water forma- tion, flow at the Otranto Strait and coastal circulation char- acteristics over the northern Adriatic shelf), in view of the pre-operational use of the modelling system This paper de- scribes the modelling system setup, and discusses the simula- tion results for the whole Adriatic Sea and its northern basin, comparing the simulations with the observed climatological circulation characteristics Results obtained with the north- ern Adriatic model are also compared with the correspond- ing simulations obtained with the coarser resolution Adriatic model Its morphology and the characteristics of the forcing func- tions acting on the basin determine several notable differ- ences with respect to the whole Mediterranean basin While the Mediterranean Sea is almost everywhere characterized by a reduced extension of the continental shelf, the northern part of the Adriatic basin lies entirely on the shelf and is charac- terized by very shallow depths (35 m on the average) In the central part depths are gently increasing to 100 m, and the distinctive morphological features are two small bottom de- pressions (the so-called "Pomo" or "Jabuka" Pits) having a maximum depth of 250 m The southern part of the basin contrasts markedly with the northern one, as depths rapidly increase to maximum values of about 1200 m The connec- tion with the Ionian Sea in the Otranto Strait is characterized by a sill having a depth of 875 m The surface heat exchange between the sea and the atmo- sphere determines a net heat loss, estimated by Artegiani et al (1997a) and Maggiore et al (1998) on an annual basis at -22 W/m 2 Monthly values ranges between -250 (winter) and 200 (summer) W/m 2 The Adriatic Sea has, therefore, a negative heat budget, a characteristic consistent with the whole Mediterranean Sea On the contrary, the fresh water budget differs strongly from the overall Mediterranean Sea budget In fact, the Adri- atic Sea shows a significant net fresh water gain, while the whole Mediterranean basin is characterized by a net fresh water loss Raicich (1996) has estimated the net annual fresh water gain of the Adriatic Sea to be greater than 1 m, mostly determined by the strong river runoff contribution, since evaporation and precipitation almost cancel each other on an annual basis The climatology of the river runoff into the Adriatic Sea, compiled by Raicich (1994), is shown in Table 1 It indicates that most of the runoff is concentrated in the northern Adriatic Sea, but there are significant contri- butions also in the southern basin due to the rivers located along the Albanian coast, north of the Otranto Strait The major river discharging in the basin is the Po, with an annu-

141 citations


Journal ArticleDOI
TL;DR: In this article, the authors calculate the latitude profile of the equatorward-directed ionospheric Pedersen currents that are driven in Saturn's ionosphere by partial corotation of the magnetospheric plasma.
Abstract: . We calculate the latitude profile of the equatorward-directed ionospheric Pedersen currents that are driven in Saturn’s ionosphere by partial corotation of the magnetospheric plasma. The calculation incorporates the flattened figure of the planet, a model of Saturn’s magnetic field derived from spacecraft flyby data, and angular velocity models derived from Voyager plasma data. We also employ an effective height-integrated ionospheric Pedersen conductivity of 1 mho, suggested by a related analysis of Voyager magnetic field data. The Voyager plasma data suggest that on the largest spatial scales, the plasma angular velocity declines from near-rigid corotation with the planet in the inner magnetosphere, to values of about half of rigid corotation at the outer boundary of the region considered. The latter extends to ~ 15–20 Saturn radii (RS) in the equatorial plane, mapping along magnetic field lines to ~ 15° co-latitude in the ionosphere. We find in this case that the ionospheric Pedersen current peaks near the poleward (outer) boundary of this region, and falls toward zero over ~ 5°–10° equator-ward of the boundary as the plasma approaches rigid corotation. The peak current near the poleward boundary, integrated in azimuth, is ~ 6 MA. The field-aligned current required for continuity is directed out of the ionosphere into the magnetosphere essentially throughout the region, with the current density peaking at ~ 10 nA m-2 at ~ 20° co-latitude. We estimate that such current densities are well below the limit requiring field-aligned acceleration of magnetospheric electrons in Saturn’s environment ( ~ 70 nAm-2), so that no significant auroral features associated with this ring of upward current is anticipated. The observed ultraviolet auroras at Saturn are also found to occur significantly closer to the pole (at ~ 10°–15° co-latitude), and show considerable temporal and local time variability, contrary to expectations for corotation-related currents. We thus conclude that Saturn’s ‘main oval’ auroras are not associated with corotation-enforcing currents as they are at Jupiter, but instead are most probably associated with coupling to the solar wind as at Earth. At the same time, the Voyager flow observations also suggest the presence of radially localized ‘dips’ in the plasma angular velocity associated with the moons Dione and Rhea, which are ~ 1–2 RS in radial extent in the equatorial plane. The presence of such small-scale flow features, assumed to be azimuthally extended, results in localized several-MA enhancements in the ionospheric Pedersen current, and narrow bi-polar signatures in the field-aligned currents which peak at values an order of magnitude larger than those associated with the large-scale currents. Narrow auroral rings (or partial rings) ~ 0.25° co-latitude wide with intensities ~ 1 kiloRayleigh may be formed in the regions of upward field-aligned current under favourable circumstances, located at co-latitudes between ~ 17° and ~ 20° in the north, and ~ 19° and ~22° in the south. Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; planetary magnetospheres)

124 citations


Journal ArticleDOI
TL;DR: In this article, the circulation of heavy ions of planetary origin within Mercury's magnetosphere was examined using single particle trajectory calculations, focusing on the dynamics of sodium ions, one of the main species that are ejected from the planet's surface.
Abstract: . We examine the circulation of heavy ions of planetary origin within Mercury’s magnetosphere. Using single particle trajectory calculations, we focus on the dynamics of sodium ions, one of the main species that are ejected from the planet’s surface. The numerical simulations reveal a significant population in the near-Mercury environment in the nightside sector, with energetic (several keV) Na + densities that reach several tenths cm-3 at planetary perihelion. At aphelion, a lesser (by about one order of magnitude) density contribution is obtained, due to weaker photon flux and solar wind flux. The numerical simulations also display several features of interest that follow from the small spatial scales of Mercury’s magnetosphere. First, in contrast to the situation prevailing at Earth, ions in the magnetospheric lobes are found to be relatively energetic (a few hundreds of eV), despite the low-energy character of the exospheric source. This results from enhanced centrifugal acceleration during E × B transport over the polar cap. Second, the large Larmor radii in the mid-tail result in the loss of most Na + into the dusk flank at radial distances greater than a few planetary radii. Because gyroradii are comparable to, or larger than, the magnetic field variation length scale, the Na + motion is also found to be non-adiabatic throughout most of Mercury’s equatorial magnetosphere, leading to chaotic scattering into the loss cone or meandering (Speiser-type) motion in the near-tail. As a direct consequence, a localized region of energetic Na + precipitation develops at the planet’s surface. In this region which extends over a wide range of longitudes at mid-latitudes ( ~ 30°–40°), one may expect additional sputtering of planetary material. Key words. Magnetospheric physics (planetary magnetospheres) – Space plasma physics (charged particle motion and acceleration; numerical simulation studies)

121 citations


Journal ArticleDOI
TL;DR: In this paper, a new quasi-neutral hybrid model is developed to study various processes associated with the Mercury-solar wind interaction, and the basic assumptions of the approach and the algorithms used in the new model are thoroughly presented.
Abstract: . Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future. Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions) – Space plasma physics (numerical simulation studies)

109 citations


Journal ArticleDOI
TL;DR: In this article, a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation, is presented, which suggests the presence of a surface wave mode dominating the normal magnetic field component of the ripples as well as whistler waves excited by reflected ions.
Abstract: . The overall structure of quasi-perpendicular, high Mach number collisionless shocks is controlled to a large extent by ion reflection at the shock ramp. Departure from a strictly one-dimensional structure is indicated by simulation results showing that the surface of such shocks is rippled, with variations in the density and all field components. We present a detailed analysis of these shock ripples, using results from a two-dimensional hybrid (particle ions, electron fluid) simulation. The process that generates the ripples is poorly understood, because the large gradients at the shock ramp make it difficult to identify instabilities. Our analysis reveals new features of the shock ripples, which suggest the presence of a surface wave mode dominating the shock normal magnetic field component of the ripples, as well as whistler waves excited by reflected ions. Key words. Space plasma physics (numerical simulation studies; shock waves; waves and instabilities)

106 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the STAFF spectrum analyzer to determine the direction of the wave normal relative to the Earth's magnetic field as a function of frequency and time.
Abstract: . One of the objectives of the Cluster mission is to study sources of various electromagnetic waves using the four satellites. This paper describes the methods we have applied to data recorded from the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. This spectral matrix is analysed to determine, for each satellite, the direction of the wave normal relative to the Earth’s magnetic field as a function of frequency and of time. Due to the Cluster orbit, chorus emissions are often observed close to perigee, and the data analysis determines the direction of these waves. Three events observed during different levels of magnetic activity are reported. It is shown that the component of the Poynting vector parallel to the magnetic field changes its sense when the satellites cross the magnetic equator, which indicates that the chorus waves propagate away from the equator. Detailed analysis indicates that the source is located in close vicinity of the plane of the geomagnetic equator. Key words. Magnetospheric physics (plasma waves and instabilities; storms and substorms); Space plasma physics (waves and instabilities)

Journal ArticleDOI
TL;DR: In this article, the authors examined the use of a complex ecosystem model along with near real-time in situ data and a sequential data assimilation method for state estimation using Ensemble Kalman Filer (EnKF).
Abstract: . The purpose of this paper is to examine the use of a complex ecosystem model along with near real-time in situ data and a sequential data assimilation method for state estimation. The ecosystem model used is the European Regional Seas Ecosystem Model (ERSEM; Baretta et al., 1995) and the assimilation method chosen is the Ensemble Kalman Filer (EnKF). Previously, it has been shown that this method captures the nonlinear error evolution in time and is capable of both tracking the observations and providing realistic error estimates for the estimated state. This system has been used to assimilate long time series of in situ chlorophyll taken from a data buoy in the Cretan Sea. The assimilation of this data using the EnKF method results in a marked improvement in the ability of ERSEM to hindcast chlorophyll. The sensitivity of this system to the type of data used for assimilation, the frequency of assimilation, ensemble size and model errors is discussed. The predictability window of the EnKF appears to be at least 2 days. This is an indication that the methodology might be suitable for future operational data assimilation systems using more complex three-dimensional models. Key words. Oceanography: general (numerical modelling; ocean prediction) – Oceanography: biological and chemical (plankton)

Journal ArticleDOI
TL;DR: In this article, an eddy resolving model of the Levantine and Aegean basins and its one-way nesting with a coarse resolution (1/8° × 1.8°) global Mediterranean general circulation model is presented.
Abstract: . The present study deals with the implementation of an eddy resolving model of the Levantine and Aegean basins and its one-way nesting with a coarse resolution (1/8° × 1/8°) global Mediterranean general circulation model. The modelling effort is done within the framework of the Mediterranean Forecasting System Pilot Project as an initiative towards real-time forecasting within the eastern Mediterranean region. The performed climatological runs of the nested model have shown very promising results on the ability of the model to capture correctly the complex dynamics of the area and at the same time to demonstrate the skill and robustness of the nesting technique applied. A second aim of this study is to prepare a comprehensive climatological surface boundary conditions data set for the Mediterranean Sea. This data set has been developed within the framework of the same research project and is suitable for use in ocean circulation models of the Mediterranean Sea or parts of it. The computation is based on the ECMWF 6-h atmospheric parameters for the period 1979–1993 and a calibrated set of momentum and heat flux bulk formulae resulted from previous studies for the Mediterranean region. Key words. Oceanography: general (numerical modelling); physical (general circulation; air-sea interactions)

Journal ArticleDOI
TL;DR: In 2000 and 2001, Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum as mentioned in this paper.
Abstract: . In 2000–2001 Ulysses passed from the south to the north polar regions of the Sun in the inner heliosphere, providing a snapshot of the latitudinal structure of cosmic ray modulation and solar energetic particle populations during a period near solar maximum. Observations from the COSPIN suite of energetic charged particle telescopes show that latitude variations in the cosmic ray intensity in the inner heliosphere are nearly non-existent near solar maximum, whereas small but clear latitude gradients were observed during the similar phase of Ulysses’ orbit near the 1994–95 solar minimum. At proton energies above ~10 MeV and extending up to >70 MeV, the intensities are often dominated by Solar Energetic Particles (SEPs) accelerated near the Sun in association with intense solar flares and large Coronal Mass Ejections (CMEs). At lower energies the particle intensities are almost constantly enhanced above background, most likely as a result of a mix of SEPs and particles accelerated by interplanetary shocks. Simultaneous high-latitude Ulysses and near-Earth observations show that most events that produce large flux increases near Earth also produce flux increases at Ulysses, even at the highest latitudes attained. Particle anisotropies during particle onsets at Ulysses are typically directed outwards from the Sun, suggesting either acceleration extending to high latitudes or efficient cross-field propagation somewhere inside the orbit of Ulysses. Both cosmic ray and SEP observations are consistent with highly efficient transport of energetic charged particles between the equatorial and polar regions and across the mean interplanetary magnetic fields in the inner heliosphere. Key words. Interplanetary physics (cosmic rays) – Solar physics, astrophysics and astronomy (energetic particles; flares and mass ejections)

Journal ArticleDOI
TL;DR: In this paper, a high resolution eddy-resolving primitive equation numerical model, based on the Princeton Ocean Model (POM), is used to study the seasonal variability of the general circulation in the Central Mediterranean Sea.
Abstract: . A high resolution eddy-resolving primitive equation numerical model, based on the Princeton Ocean Model (POM), is used to study the seasonal variability of the general circulation in the Central Mediterranean Sea. The model is run on a seasonal cycle, perpetual year simulation for five years, with nesting to the coarser resolution Ocean General Circulation Model (OGCM), covering the whole Mediterranean Sea. The model results are compared to the current knowledge on the hydrography and dynamics of the area, with a special focus on the annual cycle of the Modified Atlantic Water (MAW), on the circulation in the Sardinia Channel, the water exchange across the Strait of Sicily, and on the transition and fate of the Levantine Intermediate Water (LIW). The results show that the adopted coupling techniques between the two models give a proficient downscaling of the large-scale OGCM flow field into the regional scale model. The numerical solution is also used to highlight the seasonal characteristics of important dynamical features in the area, as well as to shed light on the scarcely known circulation regimes along the north African shelf and slope. Key words. Oceanography: general (numerical modelling); Oceanography: physical (currents; general circulation)

Journal ArticleDOI
TL;DR: In this paper, the experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites) were processed and analyzed with the goal to search for particle bursts.
Abstract: . The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites) were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions)

Journal ArticleDOI
TL;DR: In this article, the authors investigated the geomagnetic storm of 6-7 April 2000 and found that the peak GIC during the storm were clearly related to substorm intensifications, but there were no common characteristics discernible in substorm behaviour that could be associated with all the GIC peaks.
Abstract: . Geomagnetically induced currents (GIC) flowing in technological systems on the ground are a direct manifestation of space weather. Due to the proximity of very dynamic ionospheric current systems, GIC are of special interest at high latitudes, where they have been known to cause problems, for example, for normal operation of power transmission systems and buried pipelines. The basic physics underlying GIC, i.e. the magnetosphere – ionosphere interaction and electromagnetic induction in the ground, is already quite well known. However, no detailed study of the drivers of GIC has been carried out and little is known about the relative importance of different types of ionospheric current systems in terms of large GIC. In this study, the geomagnetic storm of 6–7 April 2000 is investigated. During this event, large GIC were measured in technological systems, both in Finland and in Great Britain. Therefore, this provides a basis for a detailed GIC study over a relatively large regional scale. By using GIC data and corresponding geomagnetic data from north European magnetometer networks, the ionospheric drivers of large GIC during the event were identified and analysed. Although most of the peak GIC during the storm were clearly related to substorm intensifications, there were no common characteristics discernible in substorm behaviour that could be associated with all the GIC peaks. For example, both very localized ionospheric currents structures, as well as relatively large-scale propagating structures were observed during the peaks in GIC. Only during the storm sudden commencement at the beginning of the event were large-scale GIC evident across northern Europe with coherent behaviour. The typical duration of peaks in GIC was also quite short, varying between 2–15 min. Key words. Geomagnetism and paleo-magnetism (geomagnetic induction) – Ionosphere (ionospheric disturbances) – Magnetospheric physics (storms and substorms)

Journal ArticleDOI
TL;DR: In this article, the seasonal characteristics of the circulation in the North Aegean Sea are examined with the aid of a climatological type simulation (three-year run with perpetual year forcing) on a fine resolution grid (2.5 km by 2.5km).
Abstract: . The seasonal characteristics of the circulation in the North Aegean Sea are examined with the aid of a climatological type simulation (three-year run with perpetual year forcing) on a fine resolution grid (2.5 km by 2.5 km). The model is based on the Princeton Ocean Model with a parameterisation of plume dynamics that is employed for the input of waters with hydrographic properties that are different than the properties of basin waters, as the Black Sea Water (BSW) outflow through the Dardanelles Strait and riverine sources. The model is nested with a sequence of coarser regional and basin-wide models that provide for the long-term interaction between the study area and the Eastern Mediterranean at large. The results are employed to discuss the response of the North Aegean to the important circulation forcing mechanisms in the region, namely wind stress, heat and salt fluxes, buoyancy due to rivers and the BSW outflow (which is low in salinity and occasionally low in temperature) and the interaction with the Southern Aegean. The high resolution allows for the detailed representation of the complicated topography that presides in the region. This helps produce a rich eddy field and it allows for variability in the pathways of BSW that has implications in the basin hydrography and circulation. Key words. Oceanography: general (continental shelf processes; numerical modeling)

Journal ArticleDOI
Abstract: Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of ener- getic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precip- itating protons measured by the MEPED instrument at en- ergies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy compo- nent as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low- energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm in- jections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1-2 Hz (hereafter Pc1). The precipitation pattern containing the low energy compo- nent occurs mostly in the evening sector, under disturbed ge- omagnetic conditions, and in association with energetic pro- ton injections and significant increases of cold plasma den- sity at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP), but some mi- nor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electro- magnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter ener- getic protons in pitch angles, so we conclude that the precip- itation patterns studied here are the particle counterparts of the ion-cyclotron waves.

Journal ArticleDOI
TL;DR: In this paper, the spectral resonance structure (SRS) seen in the background electromagnetic noise in the frequency range of 0.1-4.0 Hz was studied and it was shown that the occurrence rate of SRS is higher in the nighttime than in the daytime.
Abstract: . Continuous observations of fluctuations of the geomagnetic field at Sodankyla Geophysical Observatory (L = 5.2) were used for a comprehensive morphological study of the spectral resonance structure (SRS) seen in the background electromagnetic noise in the frequency range of 0.1–4.0 Hz. It is shown that the occurrence rate of SRS is higher in the nighttime than in the daytime. The occurrence rate is higher in winter than in summer. The SRS frequencies and the difference between neighbouring eigenfrequencies (the frequency scale) increase towards nighttime and decrease towards daytime. Both frequency scale and occurrence rate exhibit a clear tendency to decrease from minimum to maximum of the solar activity cycle. It is found that the occurrence rate of SRS decreases when geomagnetic activity increases. The SRS is believed to be a consequence of a resonator for Alfven waves, which is suggested to exist in the upper ionosphere. According to the theory of the ionospheric Alfven resonator (IAR), characteristics of SRS crucially depend on electron density in the F-layer maximum, as well as on the altitudinal scale of the density decay above the maximum.We compared the SRS morphological properties with predictions of the IAR theory. The ionospheric parameters needed for calculation were obtained from the ionosphere model (IRI-95), as well as from measurements made with the ionosonde in Sodankyla. We conclude that, indeed, the main morphological properties of SRS are explained on the basis of the IAR theory. The measured parameters of SRS can be used for improving the ionospheric models. Key words. Ionosphere (auroral ionosphere; wave propagation) – Radio Science (electromagnetic noise and interference)

Journal ArticleDOI
TL;DR: In this paper, the authors used the Meyer and Morlet wavelet transforms to study planetary wave type oscillations in the lower and middle atmosphere but also in the ionosphere, including the ionospheric F2-layer.
Abstract: . Planetary waves are oscillations of very predominantly tropospheric origin with typical periods of about 2–30 days. Their dominant zonal wave numbers are 1, 2 and 3, i.e. the waves are of large-scale (global) character. The planetary wave type oscillations have been observed in the lower and middle atmosphere but also in the ionosphere, including the ionospheric F2-layer. Here, we deal only with the oscillations analyzed for four European stations over a solar cycle with the use of the Meyer and Morlet wavelet transforms. Waves with periods near 5, 10 and 16 days are studied. Only events with a duration of three wave-cycles and more are considered. The 5-day period wave events display a typical duration of 4 cycles, while 10- and 16-day wave events are less persistent, with a typical duration of about 3.5 cycles and 3 cycles, respectively. The persistence pattern in terms of number of cycles and in terms of number of days is different. In terms of number of cycles, the typical persistence of oscillations decreases with increasing period. On the other hand, in terms of number of days the typical persistence evidently increases with increasing period. The spectral distribution of event duration is too broad to allow for a reasonable prediction of event duration. Thus, the predictability of the planetary wave type oscillations in foF2 seems to be very questionable. Key words. Ionosphere (ionosphere-atmosphere interaction, mid-latitude ionosphere, ionospheric disturbances) – Meteorology and atmospheric dynamics (waves and tides)

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features, and propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window.
Abstract: . This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC) process. Key words. Magnetospheric physics (magnetotail; plasma sheet) – Space plasma physics (turbulence)

Journal ArticleDOI
TL;DR: In this paper, the authors present SuperDARN radar observations of the nightside high-latitude ionospheric flow during two 6-hour intervals of quasi-steady northward interplanetary magnetic field (IMF).
Abstract: . We present SuperDARN radar observations of the nightside high-latitude ionospheric flow during two 6-hour intervals of quasi-steady northward interplanetary magnetic field (IMF). During both intervals (01:30–07:30 UT on 2 December and 21:00–03:00 UT on 14/15 December 1999), the solar wind and IMF remained relatively steady with Bz positive and By negative, such that the IMF clock angle was ~ - 50° to - 60°. Throughout both intervals the radar data clearly indicate the presence of a highly distorted By-dominated twin cell flow pattern, indicative of an open magnetosphere, which is confirmed by DMSP and auroral data. Estimates of the changes in open flux present during each interval indicate approximately balanced dayside and nightside reconnection at rates of ~ 30–35 kV over the full 6 h. However, strong bursts of flow with speeds of over ~ 1000 ms-1 are observed near magnetic midnight on time scales of ~ 1 h, which are associated with increases in the transpolar voltage. These are indicative of the net closure of open flux by recon-nection in the tail. During one large flow burst, the night-side reconnection rate is estimated to have been ~ 1.5 times the dayside rate, i.e. ~ 45–60 kV compared with ~ 30–40 kV. Magnetic bays, which would indicate the formation of a sub-storm current wedge, are not observed in association with these bursts. In addition, no low-latitude Pi2s or geostationary particle injections were observed, although some local, small amplitude Pi2-band (5–50 mHz) activity does accompany the bursts. Coincident measurements of the flow and of the low amplitude magnetic perturbations reveal nightside ionospheric conductances of no more than a few mho, indicative of little associated precipitation. Therefore, we suggest that the flow bursts are the ionospheric manifestation of bursty reconnection events occurring in the more distant geomagnetic tail. The main implication of these findings is that, under the circumstances examined here, the convection cycle is not equivalent to the usual substorm cycle that occurs for southward IMF. Key words. Ionosphere (plasma convection; ionosphere-magnetosphere interactions) – Magnetospheric Physics (magnetotail)

Journal ArticleDOI
TL;DR: In this article, the results from numerical simulations carried out with a complex biogeochemical fluxes model coupled with a one-dimensional high-resolution hydrodynamical model and implemented at three different locations of the northern Adriatic shelf are presented.
Abstract: . In this paper we show results from numerical simulations carried out with a complex biogeochemical fluxes model coupled with a one-dimensional high-resolution hydrodynamical model and implemented at three different locations of the northern Adriatic shelf. One location is directly affected by the Po River influence, one has more open-sea characteristics and one is located in the Gulf of Trieste with an intermediate behavior; emphasis is put on the comparison with observations and on the functioning of the northern Adriatic ecosystem in the three areas. The work has been performed in a climatological context and has to be considered as preliminary to the development of three-dimensional numerical simulations. Biogeochemical model parameterizations have been ameliorated with a detailed description of bacterial substrate utilization associated with the quality of the dissolved organic matter (DOM), in order to improve the models capability in capturing the observed DOM dynamics in the basin. The coupled model has been calibrated and validated at the three locations by means of climatological data sets. Results show satisfactory model behavior in simulating local seasonal dynamics in the limit of the available boundary conditions and the one-dimensional implementation. Comparisons with available measurements of primary and bacterial production and bacterial abundances have been performed in all locations. Model simulated rates and bacterial dynamics are in the same order of magnitude of observations and show a qualitatively correct time evolution. The importance of temperature as a factor controlling bacteria efficiency is investigated with sensitivity experiments on the model parameterizations. The different model behavior and pelagic ecosystem structure developed by the model at the three locations can be attributed to the local hydrodynamical features and interactions with external inputs of nutrients. The onset of the winter/spring bloom in the climatological simulations is primarily driven by local stratification conditions. During summer the major carbon-transfer pathway developed by the model is the microbial web at all the sites, indicating that a large fraction of organic matter is processed through bacteria during productive periods, as suggested by field observations. The site directly influenced by riverine inputs differs from the others, showing a more alternate shifting among trophic pathways. Applying the conceptual scheme proposed by Legendre and Rassoulzadegan (Ophelia, 41, 153-172, 1995), it can be recognized as a herbivorous spring phase tightly followed by a microbial loop development, a summer microbial web phase and a multivorous trophic web pattern during autumn with a subsequent recovery of microbial processes. Results are discussed in terms of regime shifting from transient to stable water column conditions. Key words. Oceanography: general (continental shelf processes; numerical modelling) – Oceanography: biological and chemical (biochemistry and food chains)

Journal ArticleDOI
TL;DR: In this paper, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7° S, 45 ° W, 15.8 ° S dip latitude), Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7 ° S to 28.7º S) region.
Abstract: . The equatorial ionospheric irregularities have been observed in the past few years by different techniques (e.g. ground-based radar, digisonde, GPS, optical instruments, in situ satellite and rocket instrumentation), and its time evolution and propagation characteristics can be used to study important aspects of ionospheric dynamics and thermosphere-ionosphere coupling. At present, one of the most powerful optical techniques to study the large-scale ionospheric irregularities is the all-sky imaging photometer system, which normally measures the strong F-region nightglow 630 nm emission from atomic oxygen. The monochromatic OI 630 nm emission images usually show quasi-north-south magnetic field-aligned intensity depletion bands, which are the bottomside optical signatures of large-scale F-region plasma irregularities (also called plasma bubbles). The zonal drift velocities of the plasma bubbles can be inferred from the space-time displacement of the dark structures (low intensity regions) seen on the images. In this study, images obtained with an all-sky imaging photometer, using the OI 630 nm nightglow emission, from Cachoeira Paulista (22.7 ° S, 45 ° W, 15.8 ° S dip latitude), Brazil, have been used to determine the nocturnal monthly and latitudinal variation characteristics of the zonal plasma bubble drift velocities in the low latitude (16.7° S to 28.7 ° S) region. The east and west walls of the plasma bubble show a different evolution with time. The method used here is based on the western wall of the bubble, which presents a more stable behavior. Also, the observed zonal plasma bubble drift velocities are compared with the thermospheric zonal neutral wind velocities obtained from the HWM-90 model (Hedin et al., 1991) to investigate the thermosphere-ionosphere coupling. Salient features from this study are presented and discussed. Key words. Ionosphere (ionosphere-atmosphere interactions; ionospheric irregularities; instruments and techniques)

Journal ArticleDOI
TL;DR: In this article, four spacecraft observations of fast-magnetosonic waves are presented and analyzed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used.
Abstract: . The terrestrial foreshock is characterised by the existence of large amplitude ultra low frequency waves. The majority of such waves are observed to be left-handed in the spacecraft frame, but are in fact intrinsically right-handed and have been identified as fast-magnetosonic waves. More rarely observed are waves that are right-handed in the spacecraft frame. Cluster four spacecraft observations of such waves are presented and analysed using multi-spacecraft techniques; in particular the k-filtering/wave telescope technique is used. The waves are found to be left-handed and propagating sunwards in the plasma rest frame, and are, therefore, identified as Alfvenic. The convection of the waves anti-sunward in the solar wind flow causes the observed polarisation to be reversed. Generation mechanisms are discussed. Key words. Interplanetary physics (MHD waves and turbulence; planetary bow shocks) – Space plasma physics (wave particle interactions)

Journal ArticleDOI
TL;DR: In this article, the authors describe the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP), which is a reduced order optimal interpolation (OI) scheme.
Abstract: . This paper describes the operational implementation of the data assimilation scheme for the Mediterranean Forecasting System Pilot Project (MFSPP). The assimilation scheme, System for Ocean Forecast and Analysis (SOFA), is a reduced order Optimal Interpolation (OI) scheme. The order reduction is achieved by projection of the state vector into vertical Empirical Orthogonal Functions (EOF). The data assimilated are Sea Level Anomaly (SLA) and temperature profiles from Expandable Bathy Termographs (XBT). The data collection, quality control, assimilation and forecast procedures are all done in Near Real Time (NRT). The OI is used intermittently with an assimilation cycle of one week so that an analysis is produced once a week. The forecast is then done for ten days following the analysis day. The root mean square (RMS) between the model forecast and the analysis (the forecast RMS) is below 0.7°C in the surface layers and below 0.2°C in the layers deeper than 200 m for all the ten forecast days. The RMS between forecast and initial condition (persistence RMS) is higher than forecast RMS after the first day. This means that the model improves forecast with respect to persistence. The calculation of the misfit between the forecast and the satellite data suggests that the model solution represents well the main space and time variability of the SLA except for a relatively short period of three – four weeks during the summer when the data show a fast transition between the cyclonic winter and anti-cyclonic summer regimes. This occurs in the surface layers that are not corrected by our assimilation scheme hypothesis. On the basis of the forecast skill scores analysis, conclusions are drawn about future improvements. Key words. Oceanography; general (marginal and semi-enclosed seas; numerical modeling; ocean prediction)

Journal ArticleDOI
TL;DR: In this paper, a series of threshold algorithms were applied to a simulated cusp-region spectral width data set, to assess the accuracy of different algorithms and showed that simple threshold algorithms correctly identified the boundary location in, at most, 50% of the cases and that the average boundary error is at least ~ 1−2 range gates (~ 1° latitude).
Abstract: . Accurately measuring the location and motion of the polar cap boundary (PCB) in the high-latitude ionosphere can be crucial for studies concerned with the dynamics of the polar cap, e.g. the measurement of reconnection rates. The Doppler spectral width characteristics of backscatter received by the SuperDARN HF radars have been previously used for locating and tracking the PCB in the cusp region. The boundary is generally observed in meridional beams of the SuperDARN radars and appears as a distinct change between low spectral width values observed equatorward of the cusp region, and high, but variable spectral width values observed within the cusp region. To identify the spectral width boundary (SWB) between these two regions, a simple algorithm employing a spectral width threshold has often been applied to the data. However, there is not, as yet, a standard algorithm, or spectral width threshold, which is universally applied. Nor has there been any rigorous assessment of the accuracy of this method of boundary determination. This study applies a series of threshold algorithms to a simulated cusp-region spectral width data set, to assess the accuracy of different algorithms. This shows that simple threshold algorithms correctly identify the boundary location in, at the most, 50% of the cases and that the average boundary error is at least ~ 1–2 range gates (~ 1° latitude). It transpires that spatial and temporal smoothing of the spectral width data (e.g. by median filtering), before application of a threshold algorithm can increase the boundary determination accuracy to over 95% and the average boundary error to much less than a range gate. However, this is sometimes at the cost of temporal resolution in the motion of the boundary location. The algorithms are also applied to a year’s worth of spectral width data from the cusp ionosphere, measured by the Halley SuperDARN radar in Antarctica. This analysis highlights the increased accuracy of the enhanced boundary determination algorithm in the cusp region. Away from the cusp, the resulting SWB locations are often dependent on the choice of threshold. This suggests that there is not a sharp latitudinal SWB in regions of the dayside ionosphere away from the cusp, but that there is a shallower latitudinal gradient in spectral width near the boundary location. Key words. Ionosphere (instruments and techniques) – Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionosphere interactions)

Journal ArticleDOI
TL;DR: In this article, the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT were investigated.
Abstract: . This paper is related to the propagation characteristics of a chorus emission recorded simultaneously by the 4 satellites of the CLUSTER mission on 29 October 2001 between 01:00 and 05:00 UT. During this day, the spacecraft (SC) 1, 2, and 4 are relatively close to each other but SC3 has been delayed by half an hour. We use the data recorded aboard CLUSTER by the STAFF spectrum analyser. This instrument provides the cross spectral matrix of three magnetic and two electric field components. Dedicated software processes this spectral matrix in order to determine the wave normal directions relative to the Earth’s magnetic field. This calculation is done for the 4 satellites at different times and different frequencies and allows us to check the directions of these waves. Measurements around the magnetic equator show that the parallel component of the Poynting vector changes its sign when the satellites cross the equator region. It indicates that the chorus waves propagate away from this region which is considered as the source area of these emissions. This is valid for the most intense waves observed on the magnetic and electric power spectrograms. But it is also observed on SC1, SC2, and SC4 that lower intensity waves propagate toward the equator simultaneously with the SC3 intense chorus waves propagating away from the equator. Both waves are at the same frequency. Using the wave normal directions of these waves, a ray tracing study shows that the waves observed by SC1, SC2, and SC4 cross the equatorial plane at the same location as the waves observed by SC3. SC3 which is 30 minutes late observes the waves that originate first from the equator; meanwhile, SC1, SC2, and SC4 observe the same waves that have suffered a Lower Hybrid Resonance (LHR) reflection at low altitudes (based on the ray tracing analysis) and now return to the equator at a different location with a lower intensity. Similar phenomenon is observed when all SC are on the other side of the equator. The intensity ratio between magnetic waves coming directly from the equator and waves returning to the equator is between 0.005 and 0.01, which is in agreement with previously published theoretical calculation of the growth rates with the particle distribution seen by GEOS. Key words. Magnetospheric physics (plasma waves and instabilities) – Ionosphere (wave propagation) – Radio science (magnetospheric physics)

Journal ArticleDOI
TL;DR: In this article, the authors present in situ observational evidence from the Cluster Ion Spectrometer (CIS) on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause.
Abstract: . This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS) on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978). The injected plasma clouds, hereafter termed "plasma transfer events", (PTEs), (Woch and Lundin, 1991), are temporal in nature and relatively limited in size. They are initially moving inward with a high velocity and a magnetic signature that makes them essentially indistinguishable from regular magnetosheath encounters. Once inside the magnetosphere, however, PTEs are more easily distinguished from magnetopause encounters. The PTEs may still be moving while embedded in an isotropic background of energetic trapped particles but, once inside the magnetosphere, they expand along magnetic field lines. However, they frequently have a significant transverse drift component as well. The drift is localised, thus constituting an excess momentum/motional emf generating electric fields and currents. The induced emf also acts locally, accelerating a pre-existing cold plasma (e.g. Sauvaud et al., 2001). Observations of PTE-signatures range from "active" (strong transverse flow, magnetic turbulence, electric current, local plasma acceleration) to "evanescent" (weak flow, weak current signature). PTEs appear to occur independently of Interplanetary Magnetic Field (IMF) Bz in the vicinity of the polar cusp region, which is consistent with observations of transient plasma injections observed with mid- and high-altitude satellites (e.g. Woch and Lundin, 1992; Stenuit et al., 2001). However the characteristics of PTEs in the magnetosphere boundary layer differ for southward and northward IMF. The Cluster data available up to now indicate that PTEs penetrate deeper into the magnetosphere for northward IMF than for southward IMF. This may or may not mark a difference in nature between PTEs observed for southward and northward IMF. Considering that flux transfer events (FTEs), (Russell and Elphic, 1979), are observed for southward IMF or when the IMF is oriented such that antiparallel merging may occur, it seems likely that PTEs observed for southward IMF are related to FTEs. Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere-ionosphere interactions; solar-wind magnetosphere interactions)