scispace - formally typeset
Search or ask a question

Showing papers on "ATP transport published in 2016"


Journal ArticleDOI
TL;DR: Puerarin inhibited Cd-induced apoptosis in rPT cells by ameliorating the mitochondrial dysfunction by regulating expression levels of AnT-1 and ANT-2 to improve ATP transport.

40 citations


Journal ArticleDOI
TL;DR: PU produced a significant protection against Pb-induced mitochondrial apoptosis in rPT cells by inhibiting MPTP opening to ameliorate the mitochondrial dysfunction.
Abstract: Previous study has demonstrated that mitochondrial-dependent apoptotic pathway is involved in the nephroprotective effect of puerarin (PU) against lead-induced cytotoxicity in primary cultures of rat proximal tubular (rPT) cells. To further clarify how PU exerts its antiapoptotic effects, this study was designed to investigate the role of mitochondrial permeability transition (MPT) and subsequent apoptotic events in the process of PU against Pb-induced cytotoxicity in rPT cells. The results showed that Pb-mediated mitochondrial permeability transition pore (MPTP) opening together with mitochondrial cytochrome c release, activations of caspase-9 and caspase-3, and subsequent poly-ADP-ribose polymerase (PARP) cleavage can be effectively blocked by the addition of PU. Simultaneously, upregulation and downregulation of Bcl-2 and Bax with increased Bcl-2/Bax ratio due to PU administration further alleviated Pb-induced mitochondrial apoptosis. Moreover, PU can reverse Pb-induced ATP depletion by restoring mitochondrial fragmentation to affect ATP production and by regulating expression levels of ANT-1 and ANT-2 to improve ATP transport. In summary, PU produced a significant protection against Pb-induced mitochondrial apoptosis in rPT cells by inhibiting MPTP opening to ameliorate the mitochondrial dysfunction.

19 citations


Journal ArticleDOI
TL;DR: SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V‐ATPase as the driving force to transport ATP into the lysosome to activate P2X4.
Abstract: Key points SLC17A9 proteins function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation. P2X4 receptors act as lysosomal ion channels activated by luminal ATP. SLC17A9-mediated ATP transport across the lysosomal membrane is suppressed by Bafilomycin A1, the V-ATPase inhibitor. SLC17A9 mainly uses voltage gradient but not pH gradient generated by the V-ATPase as the driving force to transport ATP into the lysosome to activate P2X4. Abstract The lysosome contains abundant ATP which plays important roles in lysosome functions and in cell signalling. Recently, solute carrier family 17 member 9 (SLC17A9, also known as VNUT for vesicular nucleotide transporter) proteins were suggested to function as a lysosomal ATP transporter responsible for lysosomal ATP accumulation, and P2X4 receptors were suggested to be lysosomal ion channels that are activated by luminal ATP. However, the molecular mechanism of SLC17A9 transporting ATP and the regulatory mechanism of lysosomal P2X4 are largely unknown. In this study, we report that SLC17A9-mediated ATP transport across lysosomal membranes is suppressed by Bafilomycin A1, the V-ATPase inhibitor. By measuring P2X4 activity, which is indicative of ATP transport across lysosomal membranes, we further demonstrated that SLC17A9 mainly uses voltage gradient but not pH gradient as the driving force to transport ATP into lysosomes. This study provides a molecular mechanism for lysosomal ATP transport mediated by SLC17A9. It also suggests a regulatory mechanism of lysosomal P2X4 by SLC17A9.

17 citations