scispace - formally typeset
Search or ask a question

Showing papers in "The Journal of Physiology in 2016"


Journal ArticleDOI
TL;DR: The transcription factor c‐Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non‐myelin (Remak) Schwann cells to repair cells after injury.
Abstract: Nerve injury triggers the conversion of myelin and non-myelin (Remak) Schwann cells to a cell phenotype specialized to promote repair. Distal to damage, these repair Schwann cells provide the necessary signals and spatial cues for the survival of injured neurons, axonal regeneration and target reinnervation. The conversion to repair Schwann cells involves de-differentiation together with alternative differentiation, or activation, a combination that is typical of cell type conversions often referred to as (direct or lineage) reprogramming. Thus, injury-induced Schwann cell reprogramming involves down-regulation of myelin genes combined with activation of a set of repair-supportive features, including up-regulation of trophic factors, elevation of cytokines as part of the innate immune response, myelin clearance by activation of myelin autophagy in Schwann cells and macrophage recruitment, and the formation of regeneration tracks, Bungner's bands, for directing axons to their targets. This repair programme is controlled transcriptionally by mechanisms involving the transcription factor c-Jun, which is rapidly up-regulated in Schwann cells after injury. In the absence of c-Jun, damage results in the formation of a dysfunctional repair cell, neuronal death and failure of functional recovery. c-Jun, although not required for Schwann cell development, is therefore central to the reprogramming of myelin and non-myelin (Remak) Schwann cells to repair cells after injury. In future, the signalling that specifies this cell requires further analysis so that pharmacological tools that boost and maintain the repair Schwann cell phenotype can be developed.

728 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure.
Abstract: Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.

384 citations


Journal ArticleDOI
TL;DR: This review has brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of Fetal growth restriction.
Abstract: Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions.

347 citations


Journal ArticleDOI
TL;DR: In this paper, the anti-inflammatory role of the VN has been investigated in the treatment of TNFα-related diseases such as inflammatory bowel disease and rheumatoid arthritis.
Abstract: Brain and viscera interplay within the autonomic nervous system where the vagus nerve (VN), containing approximately 80% afferent and 20% efferent fibres, plays multiple key roles in the homeostatic regulations of visceral functions. Recent data have suggested the anti-inflammatory role of the VN. This vagal function is mediated through several pathways, some of them still debated. The first one is the anti-inflammatory hypothalamic-pituitary-adrenal axis which is stimulated by vagal afferent fibres and leads to the release of cortisol by the adrenal glands. The second one, called the cholinergic anti-inflammatory pathway, is mediated through vagal efferent fibres that synapse onto enteric neurons which release acetylcholine (ACh) at the synaptic junction with macrophages. ACh binds to α-7-nicotinic ACh receptors of those macrophages to inhibit the release of tumour necrosis (TNF)α, a pro-inflammatory cytokine. The last pathway is the splenic sympathetic anti-inflammatory pathway, where the VN stimulates the splenic sympathetic nerve. Norepinephrine (noradrenaline) released at the distal end of the splenic nerve links to the β2 adrenergic receptor of splenic lymphocytes that release ACh. Finally, ACh inhibits the release of TNFα by spleen macrophages through α-7-nicotinic ACh receptors. Understanding of these pathways is interesting from a therapeutic point of view, since they could be targeted in various ways to stimulate anti-inflammatory regulation in TNFα-related diseases such as inflammatory bowel disease and rheumatoid arthritis. Among others, VN stimulation, either as an invasive or non-invasive procedure, is becoming increasingly frequent and several clinical trials are ongoing to evaluate the potential effectiveness of this therapy to alleviate chronic inflammation.

287 citations


Journal ArticleDOI
TL;DR: A dynamic interplay between emerging pathways such as FOXOs, AMPK, SIRT1, p66Shc, JunD and NF‐kB are described, which will provide the background for attractive molecular targets to prevent age‐driven pathology in the vasculature and the heart.
Abstract: Age is one of the major risk factors associated with cardiovascular disease (CVD). About one-fifth of the world population will be aged 65 or older by 2030, with an exponential increase in CVD prevalence. It is well established that environmental factors (overnutrition, smoking, pollution, sedentary lifestyles) may lead to premature defects in mitochondrial functionality, insulin signalling, endothelial homeostasis and redox balance, fostering early senescent features. Over the last few years, molecular investigations have unveiled common signalling networks which may link the ageing process with deterioration of cardiovascular homeostasis and metabolic disturbances, namely insulin resistance. These different processes seem to be highly interconnected and their interplay may favour adverse vascular and cardiac phenotypes responsible for myocardial infarction, stroke and heart failure. In the present review, we carefully describe novel molecular cues underpinning ageing, metabolism and CVD. In particular, we describe a dynamic interplay between emerging pathways such as FOXOs, AMPK, SIRT1, p66(Shc) , JunD and NF-kB. This overview will provide the background for attractive molecular targets to prevent age-driven pathology in the vasculature and the heart.

265 citations


Journal ArticleDOI
TL;DR: This review will provide a general introduction and concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
Abstract: Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.

239 citations


Journal ArticleDOI
TL;DR: In this paper, it was shown that major components of fetal brain sparing during acute hypoxia are triggered exclusively by a carotid chemoreflex and that they are modified by endocrine agents and vascular oxidant tone.
Abstract: How the fetus withstands an environment of reduced oxygenation during life in the womb has been a vibrant area of research since this field was introduced by Joseph Barcroft, a century ago. Studies spanning five decades have since used the chronically instrumented fetal sheep preparation to investigate the fetal compensatory responses to hypoxia. This defence is contingent on the fetal cardiovascular system, which in late gestation adopts strategies to decrease oxygen consumption and redistribute the cardiac output away from peripheral vascular beds and towards essential circulations, such as those perfusing the brain. The introduction of simultaneous measurement of blood flow in the fetal carotid and femoral circulations by ultrasonic transducers has permitted investigation of the dynamics of the fetal brain sparing response for the first time. Now we know that major components of fetal brain sparing during acute hypoxia are triggered exclusively by a carotid chemoreflex and that they are modified by endocrine agents and the recently discovered vascular oxidant tone. The latter is determined by the interaction between nitric oxide and reactive oxygen species. The fetal brain sparing response matures as the fetus approaches term, in association with the prepartum increase in fetal plasma cortisol, and treatment of the preterm fetus with clinically relevant doses of synthetic steroids mimics this maturation. Despite intense interest into how the fetal brain sparing response may be affected by adverse intrauterine conditions, this area of research has been comparatively scant, but it is likely to take centre stage in the near future.

238 citations


Journal ArticleDOI
TL;DR: A review of the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph can be found in this article, where the authors focus on the mechanisms of the lymph pump system and their effect on interstitial fluid balance and other aspects of overall homeostasis.
Abstract: A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.

236 citations


Journal ArticleDOI
TL;DR: Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan.
Abstract: Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation-reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age-related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan.

231 citations


Journal ArticleDOI
TL;DR: The history of research in exercise‐induced oxidative stress is summarized, the major paradigm shifts that the field has undergone and continues to experience are discussed, and future directions are discussed in the hope of stimulating additional research in this important field.
Abstract: The existence of free radicals in living cells was first reported in 1954 and this important finding helped launch the field of free radical biology. However, the discovery that muscular exercise is associated with increased biomarkers of oxidative stress did not occur until 1978. Following the initial report that exercise promotes oxidative stress in humans, many studies have confirmed that prolonged or short-duration high intensity exercise results in increased radical production in active skeletal muscles resulting in the formation of oxidized lipids and proteins in the working muscles. Since these early descriptive studies, the investigation of radicals and redox biology related to exercise and skeletal muscle has grown as a discipline and the importance of this research in the biomedical sciences is widely recognized. This review will briefly summarize the history of research in exercise-induced oxidative stress and will discuss the major paradigm shifts that the field has undergone and continues to experience. We conclude with a discussion of future directions in the hope of stimulating additional research in this important field.

230 citations


Journal ArticleDOI
TL;DR: It is concluded that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage.
Abstract: Key points Skeletal muscle hypertrophy is one of the main outcomes from resistance training (RT), but how it is modulated throughout training is still unknown. We show that changes in myofibrillar protein synthesis (MyoPS) after an initial resistance exercise (RE) bout in the first week of RT (T1) were greater than those seen post-RE at the third (T2) and tenth week (T3) of RT, with values being similar at T2 and T3. Muscle damage (Z-band streaming) was the highest during post-RE recovery at T1, lower at T2 and minimal at T3. When muscle damage was the highest, so was the integrated MyoPS (at T1), but neither were related to hypertrophy; however, integrated MyoPS at T2 and T3 were correlated with hypertrophy. We conclude that muscle hypertrophy is the result of accumulated intermittent increases in MyoPS mainly after a progressive attenuation of muscle damage. Abstract Skeletal muscle hypertrophy is one of the main outcomes of resistance training (RT), but how hypertrophy is modulated and the mechanisms regulating it are still unknown. To investigate how muscle hypertrophy is modulated through RT, we measured day-to-day integrated myofibrillar protein synthesis (MyoPS) using deuterium oxide and assessed muscle damage at the beginning (T1), at 3 weeks (T2) and at 10 weeks of RT (T3). Ten young men (27 (1) years, mean (SEM)) had muscle biopsies (vastus lateralis) taken to measure integrated MyoPS and muscle damage (Z-band streaming and indirect parameters) before, and 24 h and 48 h post resistance exercise (post-RE) at T1, T2 and T3. Fibre cross-sectional area (fCSA) was evaluated using biopsies at T1, T2 and T3. Increases in fCSA were observed only at T3 (P = 0.017). Changes in MyoPS post-RE at T1, T2 and T3 were greater at T1 (P

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.
Abstract: The autonomic nervous system regulates all aspects of normal cardiac function, and is recognized to play a critical role in the pathophysiology of many cardiovascular diseases. As such, the value of neuroscience-based cardiovascular therapeutics is increasingly evident. This White Paper reviews the current state of understanding of human cardiac neuroanatomy, neurophysiology, pathophysiology in specific disease conditions, autonomic testing, risk stratification, and neuromodulatory strategies to mitigate the progression of cardiovascular diseases.

Journal ArticleDOI
TL;DR: However, there is no convincing evidence to suggest that antioxidant supplementation enhances exercise-training adaptions as mentioned in this paper, suggesting that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training.
Abstract: A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training-induced and ROS/RNS-mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high-intensity training, suggesting that remodelling of skeletal muscle following resistance and high-intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise-training adaptions. Overall, ROS/RNS are likely to exhibit a non-linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effects of repeated hot water immersion (heat therapy) on various biomarkers of cardiovascular health in young, sedentary humans, and showed that heat therapy increased flow-mediated dilatation, reduced arterial stiffness, reduced mean arterial and diastolic blood pressure, and reduced carotid intima media thickness, with changes all on par or greater than what is typically observed in sedentary subjects with exercise training.
Abstract: Key points A recent 30 year prospective study showed that lifelong sauna use reduces cardiovascular-related and all-cause mortality; however, the specific cardiovascular adaptations that cause this chronic protection are currently unknown. We investigated the effects of 8 weeks of repeated hot water immersion (‘heat therapy’) on various biomarkers of cardiovascular health in young, sedentary humans. We showed that, relative to a sham group which participated in thermoneutral water immersion, heat therapy increased flow-mediated dilatation, reduced arterial stiffness, reduced mean arterial and diastolic blood pressure, and reduced carotid intima media thickness, with changes all on par or greater than what is typically observed in sedentary subjects with exercise training. Our results show for the first time that heat therapy has widespread and robust effects on vascular function, and as such, could be a viable treatment option for improving cardiovascular health in a variety of patient populations, particularly those with limited exercise tolerance and/or capabilities. Abstract The majority of cardiovascular diseases are characterized by disorders of the arteries, predominantly caused by endothelial dysfunction and arterial stiffening. Intermittent hot water immersion (‘heat therapy’) results in elevations in core temperature and changes in cardiovascular haemodynamics, such as cardiac output and vascular shear stress, that are similar to exercise, and thus may provide an alternative means of improving health which could be utilized by patients with low exercise tolerance and/or capabilities. We sought to comprehensively assess the effects of 8 weeks of heat therapy on biomarkers of vascular function in young, sedentary subjects. Twenty young, sedentary subjects were assigned to participate in 8 weeks (4–5 times per week) of heat therapy (n = 10; immersion in a 40.5°C bath sufficient to maintain rectal temperature ≥ 38.5°C for 60 min per session) or thermoneutral water immersion (n = 10; sham). Eight weeks of heat therapy increased flow-mediated dilatation from 5.6 ± 0.3 to 10.9 ± 1.0% (P < 0.01) and superficial femoral dynamic arterial compliance from 0.06 ± 0.01 to 0.09 ±0.01 mm2 mmHg−1 (P = 0.03), and reduced (i.e. improved) aortic pulse wave velocity from 7.1 ± 0.3 to 6.1 ± 0.3 m s−1 (P = 0.03), carotid intima media thickness from 0.43 ± 0.01 to 0.37 ± 0.01 mm (P < 0.001), and mean arterial blood pressure from 83 ± 1 to 78 ± 2 mmHg (P = 0.02). No changes were observed in the sham group or for carotid arterial compliance, superficial femoral intima media thickness or endothelium-independent dilatation. Heat therapy improved endothelium-dependent dilatation, arterial stiffness, intima media thickness and blood pressure, indicating improved cardiovascular health. These data suggest heat therapy may provide a simple and effective tool for improving cardiovascular health in various populations.

Journal ArticleDOI
TL;DR: It is proposed that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing and future research efforts should focus on defining the temporal patterns of functional declines with ageing.
Abstract: Most nations of the world are undergoing rapid and dramatic population ageing, which presents great socio-economic challenges, as well as opportunities, for individuals, families, governments and societies. The prevailing biomedical strategy for reducing the healthcare impact of population ageing has been 'compression of morbidity' and, more recently, to increase healthspan, both of which seek to extend the healthy period of life and delay the development of chronic diseases and disability until a brief period at the end of life. Indeed, a recently established field within biological ageing research, 'geroscience', is focused on healthspan extension. Superimposed on this background are new attitudes and demand for 'optimal longevity' - living long, but with good health and quality of life. A key obstacle to achieving optimal longevity is the progressive decline in physiological function that occurs with ageing, which causes functional limitations (e.g. reduced mobility) and increases the risk of chronic diseases, disability and mortality. Current efforts to increase healthspan centre on slowing the fundamental biological processes of ageing such as inflammation/oxidative stress, increased senescence, mitochondrial dysfunction, impaired proteostasis and reduced stress resistance. We propose that optimization of physiological function throughout the lifespan should be a major emphasis of any contemporary biomedical policy addressing global ageing. Effective strategies should delay, reduce in magnitude or abolish reductions in function with ageing (primary prevention) and/or improve function or slow further declines in older adults with already impaired function (secondary prevention). Healthy lifestyle practices featuring regular physical activity and ideal energy intake/diet composition represent first-line function-preserving strategies, with pharmacological agents, including existing and new pharmaceuticals and novel 'nutraceutical' compounds, serving as potential complementary approaches. Future research efforts should focus on defining the temporal patterns of functional declines with ageing, identifying the underlying mechanisms and modulatory factors involved, and establishing the most effective lifestyle practices and pharmacological options for maintaining function. Continuing development of effective behavioural approaches for enhancing adherence to healthy ageing practices in diverse populations, and ongoing analysis of the socio-economic costs and benefits of healthspan extension will be important supporting goals. To meet the demands created by rapid population ageing, a new emphasis in physiological geroscience is needed, which will require the collaborative, interdisciplinary efforts of investigators working throughout the translational research continuum from basic science to public health.

Journal ArticleDOI
TL;DR: The present revision of Calorie restriction (CR) focuses on the general effect of CR and other mimetics in longevity, focusing especially on the cardiovascular system and skeletal muscle.
Abstract: Ageing causes loss of function in tissues and organs, is accompanied by a chronic inflammatory process and affects life- and healthspan. Calorie restriction (CR) is a non-genetic intervention that prevents age-associated diseases and extends longevity in most of the animal models studied so far. CR produces a pleiotropic effect and improves multiple metabolic pathways, generating benefits to the whole organism. Among the effects of CR, modulation of mitochondrial activity and a decrease in oxidative damage are two of the hallmarks. Oxidative damage is reduced by the induction of endogenous antioxidant systems and modulation of the peroxidability index in cell membranes. Mitochondrial activity changes are regulated by inhibition of IGF-1 and Target of Rapamycin (TOR)-dependent activities and activation of AMP-dependent kinase (AMPK) and the sirtuin family of proteins. The activity of PGC-1α and FoxO is regulated by these systems and is involved in mitochondria biogenesis, oxidative metabolism activity and mitochondrial turnover. The use of mimetics and the regulation of common factors have demonstrated that these molecular pathways are essential to explain the effect of CR in the organism. Finally, the anti-inflammatory effect of CR is an interesting emerging factor to be taken into consideration. In the present revision we focus on the general effect of CR and other mimetics in longevity, focusing especially on the cardiovascular system and skeletal muscle.

Journal ArticleDOI
TL;DR: This work reports a very modest effect of HIT and no effect of resistance training on AHN in adult male rats, and confirms that sustained aerobic exercise is key in improving AHN.
Abstract: Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents. Little is known about the effects of high-intensity interval training (HIT) or of purely anaerobic resistance training on AHN. Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats. We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity. Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high-intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low-response trainer (LRT) and high-response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin-positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non-significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult-born hippocampal neurons in adult male Sprague–Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise.

Journal ArticleDOI
TL;DR: The lateral hypothalamic area (LHA) is central to the orchestration of sleep-wake states, feeding, energy balance and motivated behaviour as discussed by the authors, and the LHA acts as a hub for the integration of diverse central and peripheral signals and coordinates adaptive behavioral responses to the environment.
Abstract: The hypothalamus is among the most phylogenetically conserved regions in the vertebrate brain, reflecting its critical role in maintaining physiological and behavioural homeostasis. By integrating signals arising from both the brain and periphery, it governs a litany of behaviourally important functions essential for survival. In particular, the lateral hypothalamic area (LHA) is central to the orchestration of sleep-wake states, feeding, energy balance and motivated behaviour. Underlying these diverse functions is a heterogeneous assembly of cell populations typically defined by neurochemical markers, such as the well-described neuropeptides hypocretin/orexin and melanin-concentrating hormone. However, anatomical and functional evidence suggests a rich diversity of other cell populations with complex neurochemical profiles that include neuropeptides, receptors and components of fast neurotransmission. Collectively, the LHA acts as a hub for the integration of diverse central and peripheral signals and, through complex local and long-range output circuits, coordinates adaptive behavioural responses to the environment. Despite tremendous progress in our understanding of the LHA, defining the identity of functionally discrete LHA cell types, and their roles in driving complex behaviour, remain significant challenges in the field. In this review, we discuss advances in our understanding of the neurochemical and cellular heterogeneity of LHA neurons and the recent application of powerful new techniques, such as opto- and chemogenetics, in defining the role of LHA circuits in feeding, reward, arousal and stress. From pioneering work to recent developments, we review how the interrogation of LHA cells and circuits is contributing to a mechanistic understanding of how the LHA coordinates complex behaviour.

Journal ArticleDOI
TL;DR: In this paper, the role of redox sensitive transcription factor nuclear factor erythroid-derived 2-like 2 (NFE2L2) in acute exercise-and training-induced mitochondrial biogenesis and the anti-oxidant response was investigated.
Abstract: Key points Reactive oxygen species (ROS) and nitric oxide (NO) regulate exercise-induced nuclear factor erythroid 2-related factor 2 (NFE2L2) expression in skeletal muscle. NFE2L2 is required for acute exercise-induced increases in skeletal muscle mitochondrial biogenesis genes, such as nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A, and anti-oxidant genes, such as superoxide dismutase (SOD)1, SOD2 and catalase. Following exercise training mice with impaired NFE2L2 expression have reduced exercise performance, energy expenditure, mitochondrial volume and anti-oxidant activity. In muscle cells, ROS and NO can regulate mitochondrial biogenesis via a NFE2L2/NRF-1-dependent pathway. Abstract Regular exercise induces adaptations to skeletal muscle, which can include mitochondrial biogenesis and enhanced anti-oxidant reserves. These adaptations and others are at least partly responsible for the improved health of physically active individuals. Reactive oxygen species (ROS) and nitric oxide (NO) are produced during exercise and may mediate the adaptive response to exercise in skeletal muscle. However, the mechanisms through which they act are unclear. In the present study, we aimed to determine the role of the redox-sensitive transcription factor nuclear factor erythroid-derived 2-like 2 (NFE2L2) in acute exercise- and training-induced mitochondrial biogenesis and the anti-oxidant response. We report that ROS and NO regulate acute exercise-induced expression of NFE2L2 in mouse skeletal muscle and muscle cells, and that deficiency in NFE2L2 prevents normal acute treadmill exercise-induced increases in mRNA of the mitochondrial biogenesis markers, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA), and the anti-oxidants superoxide dismutase (SOD) 1 and 2, as well as catalase, in mouse gastrocnemius muscle. Furthermore, after 5 weeks of treadmill exercise training, mice deficient in NFE2L2 had reduced exercise capacity and whole body energy expenditure, as well as skeletal muscle mitochondrial mass and SOD activity, compared to wild-type littermates. In C2C12 myoblasts, acute treatment with exogenous H2O2 (ROS)- and diethylenetriamine/NO adduct (NO donor) induced increases in mtTFA, which was prevented by small interfering RNA and short hairpin RNA knockdown of either NFE2L2 or NRF-1. Our results suggest that, during exercise, ROS and NO can act via NFE2L2 to functionally regulate skeletal muscle mitochondrial biogenesis and anti-oxidant defence gene expression.

Journal ArticleDOI
TL;DR: In this article, a review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the VN with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity.
Abstract: This review highlights evidence for a role of the vagus nerve in the development of obesity and how targeting the vagus nerve with neuromodulation or pharmacology can be used as a therapeutic treatment of obesity. The vagus nerve innervating the gut plays an important role in controlling metabolism. It communicates peripheral information about the volume and type of nutrients between the gut and the brain. Depending on the nutritional status, vagal afferent neurons express two different neurochemical phenotypes that can inhibit or stimulate food intake. Chronic ingestion of calorie-rich diets reduces sensitivity of vagal afferent neurons to peripheral signals and their constitutive expression of orexigenic receptors and neuropeptides. This disruption of vagal afferent signalling is sufficient to drive hyperphagia and obesity. Furthermore neuromodulation of the vagus nerve can be used in the treatment of obesity. Although the mechanisms are poorly understood, vagal nerve stimulation prevents weight gain in response to a high-fat diet. In small clinical studies, in patients with depression or epilepsy, vagal nerve stimulation has been demonstrated to promote weight loss. Vagal blockade, which inhibits the vagus nerve, results in significant weight loss. Vagal blockade is proposed to inhibit aberrant orexigenic signals arising in obesity as a putative mechanism of vagal blockade-induced weight loss. Approaches and molecular targets to develop future pharmacotherapy targeted to the vagus nerve for the treatment of obesity are proposed. In conclusion there is strong evidence that the vagus nerve is involved in the development of obesity and it is proving to be an attractive target for the treatment of obesity.

Journal ArticleDOI
TL;DR: Given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age‐related change in arterial health in humans.
Abstract: Advancing age may be the most potent independent predictor of future cardiovascular events, a relationship that is not fully explained by time-related changes in traditional cardiovascular risk factors. Since some arteries exhibit differential susceptibility to atherosclerosis, generalisations regarding the impact of ageing in humans may be overly simplistic, whereas in vivo assessment of arterial function and health provide direct insight. Coronary and peripheral (conduit, resistance and skin) arteries demonstrate a gradual, age-related impairment in vascular function that is likely to be related to a reduction in endothelium-derived nitric oxide bioavailability and/or increased production of vasoconstrictors (e.g. endothelin-1). Increased exposure and impaired ability for defence mechanisms to resist oxidative stress and inflammation, but also cellular senescence processes, may contribute to age-related changes in vascular function and health. Arteries also undergo structural changes as they age. Gradual thickening of the arterial wall, changes in wall content (i.e. less elastin, advanced glycation end-products) and increase in conduit artery diameter are observed with older age and occur similarly in central and peripheral arteries. These changes in structure have important interactive effects on artery function, with increases in small and large arterial stiffness representing a characteristic change with older age. Importantly, direct measures of arterial function and structure predict future cardiovascular events, independent of age or other cardiovascular risk factors. Taken together, and given the differential susceptibility of arteries to atherosclerosis in humans, direct measurement of arterial function and health may help to distinguish between biological and chronological age-related change in arterial health in humans.

Journal ArticleDOI
TL;DR: It is found blunted hypertrophic responses with age are underpinned by chronic deficits in long‐term muscle protein synthesis, likely to be the result of multifactorial deficits in anabolic hormones and blunting translational efficiency and capacity.
Abstract: Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (O; 69 ± 3 years), performed 6 weeks unilateral RET (6 × 8 repetitions, 75% of one repetition maximum (1-RM), 3 times per week). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom%; thereafter 50 ml week−1), further bilateral VL muscle biopsies were taken at 3 and 6 weeks to quantify muscle protein synthesis (MPS) via gas chromatography–pyrolysis–isotope ratio mass spectrometry. After RET, 1-RM increased in Y (+35 ± 4%) and O (+25 ± 3%; P < 0.01), while MVC increased in Y (+21 ± 5%; P < 0.01) but not O (+6 ± 3%; not significant (NS)). In comparison to Y, O displayed blunted RET-induced increases in muscle thickness (at 3 and 6 weeks, respectively, Y: +8 ± 1% and +11 ± 2%, P < 0.01; O: +2.6 ± 1% and +3.5 ± 2%, NS). While ‘basal’ longer term MPS was identical between Y and O (∼1.35 ± 0.1% day−1), MPS increased in response to RET only in Y (3 weeks, Y: 1.61 ± 0.1% day−1; O: 1.49 ± 0.1% day−1). Consistent with this, O exhibited inferior ribosomal biogenesis (RNA:DNA ratio and c-MYC induction: Y: +4 ± 2 fold change; O: +1.9 ± 1 fold change), translational efficiency (S6K1 phosphorylation, Y: +10 ± 4 fold change; O: +4 ± 2 fold change) and anabolic hormone milieu (testosterone, Y: 367 ± 19; O: 274 ± 19 ng dl−1 (all P < 0.05). Anabolic resistance is thus multifactorial.

Journal ArticleDOI
TL;DR: The role of TRPA1 as a multipurpose sensor of harmful signals, including toxic bacterial products and UV light, and as a sensor of stress and tissue damage was highlighted in this paper.
Abstract: TRPA1 is a non-selective cation channel expressed in mammalian peripheral pain receptors, with a major role in chemonociception. TRPA1 has also been implicated in noxious cold and mechanical pain sensation. TRPA1 has an ancient origin and plays important functions in lower organisms, including thermotaxis, mechanotransduction and modulation of lifespan. Here we highlight the role of TRPA1 as a multipurpose sensor of harmful signals, including toxic bacterial products and UV light, and as a sensor of stress and tissue damage. Sensing roles span beyond the peripheral nervous system to include major barrier tissues: gut, skin and lung. Tissue injury, environmental irritants and microbial pathogens are danger signals that can threaten the health of organisms. These signals lead to the coordinated activation of the nociceptive and the innate immune system to provide a homeostatic response trying to re-establish physiological conditions including tissue repair. Activation of TRPA1 participates in protective neuroimmune interactions at multiple levels, sensing ROS and bacterial products and triggering the release of neuropeptides. However, an exaggerated response to danger signals is maladaptive and can lead to the development of chronic inflammatory conditions.

Journal ArticleDOI
TL;DR: In this article, the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle was determined.
Abstract: Key points The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of μ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural ‘drive’ to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. Abstract To investigate the role of metabo- and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre- to post-exercise changes in potentiated quadriceps twitch torque (ΔQTsingle) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (∼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H+, adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (−52 ± 2 vs −31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r2 = 0.79; P < 0.01) and H+ (r2 = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.

Journal ArticleDOI
TL;DR: The evidence in support of cardiac repolarization is described, the way in which clinical and whole heart experiments have informed molecular mechanisms and vice versa are described, and new data that challenge these views and may lead to new clinical care and drug screening paradigms are discussed.
Abstract: Drugs used to treat cardiovascular disease as well as those used in the treatment of multiple other conditions can occasionally produce exaggerated prolongation of the QT interval on the electrocardiogram and the morphologically distinctive polymorphic ventricular tachycardia ('torsades de pointes'). This syndrome of drug-induced long QT syndrome has moved from an interesting academic exercise to become a key element in the development of any new drug entity. The prevailing view, which has driven both clinical care and drug regulation, holds that cardiac repolarization represents a balance between inward currents (primarily through calcium and sodium channels) and outward currents (primarily through rapid and slowed delayed rectifier potassium channels) and that block of the rapid delayed rectifier (IKr ) is the primary mechanism whereby drugs prolong individual action potentials, manifest on the surface electrocardiogram as QT interval prolongation. Such marked action potential prolongation in individual cardiac cells, in turn, is accompanied by arrhythmogenic afterdepolarizations thought to trigger torsades de pointes. This review describes the evidence in support of this construct, and describes the way in which clinical and whole heart experiments have informed molecular mechanisms and vice versa. New data that challenge these views and that may, as a result, lead to new clinical care and drug screening paradigms, are discussed.

Journal ArticleDOI
TL;DR: The concept of ‘adipaging’ is postulate to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.
Abstract: The increasing ageing of our societies is accompanied by a pandemic of obesity and related cardiometabolic disorders. Progressive dysfunction of the white adipose tissue is increasingly recognized as an important hallmark of the ageing process, which in turn contributes to metabolic alterations, multi-organ damage and a systemic pro-inflammatory state ('inflammageing'). On the other hand, obesity, the paradigm of adipose tissue dysfunction, shares numerous biological similarities with the normal ageing process such as chronic inflammation and multi-system alterations. Accordingly, understanding the interplay between accelerated ageing related to obesity and adipose tissue dysfunction is critical to gain insight into the ageing process in general as well as into the pathophysiology of obesity and other related conditions. Here we postulate the concept of 'adipaging' to illustrate the common links between ageing and obesity and the fact that, to a great extent, obese adults are prematurely aged individuals.

Journal ArticleDOI
TL;DR: It is argued that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome and suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiome.
Abstract: Key points Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. Abstract The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for predictive model outputs. We propose that the future of the Cardiac Physiome should include a probabilistic approach to quantify the relationship of variability and uncertainty of model inputs and outputs.

Journal ArticleDOI
TL;DR: This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.
Abstract: Neuronal elements distributed throughout the cardiac nervous system, from the level of the insular cortex to the intrinsic cardiac nervous system, are in constant communication with one another to ensure that cardiac output matches the dynamic process of regional blood flow demand. Neural elements in their various 'levels' become differentially recruited in the transduction of sensory inputs arising from the heart, major vessels, other visceral organs and somatic structures to optimize neuronal coordination of regional cardiac function. This White Paper will review the relevant aspects of the structural and functional organization for autonomic control of the heart in normal conditions, how these systems remodel/adapt during cardiac disease, and finally how such knowledge can be leveraged in the evolving realm of autonomic regulation therapy for cardiac therapeutics.

Journal ArticleDOI
TL;DR: In this article, the authors used panoramic non-invasive mapping in humans, identifying focal or reentrant sources driving AF waves were identified, originating from multiple distinct regions and exhibiting short lifespans and periodic recurrences in the same locations.
Abstract: The mechanisms responsible for perpetuation of human persistent atrial fibrillation (AF) are controversial and probably vary between individuals. A wide spectrum of mechanisms have been described in experimental studies, ranging from a single localized stable (focal/reentrant) source, to multiple sources, up to diffuse bi-atrial wavelets. We characterized AF drivers in patients with persistent AF (lasting less than 1 year) using novel high resolution mapping, imaging and modelling approaches with the objective of evaluating their relationship to atrial structural heterogeneities. Using panoramic non-invasive mapping in humans, focal or reentrant sources driving AF waves were identified, originating from multiple distinct regions and exhibiting short lifespans and periodic recurrences in the same locations. The reentrant driver regions harboured long, fractionated electrograms covering most of the fibrillatory cycle lengths with varying beat-to-beat sequences suggestive of unstable trajectories attached to slow conducting heterogeneous tissue. MRI atrial imaging demonstrated that such drivers preferentially clustered at the borders of fibrotic atrial regions. In patient-specific computer simulations, sustained AF was shown to be driven by meandering transitory reentries attached to fibrosis borders expressing specific metrics in density and extent. Finally, random microstructural alterations devoid of cellular electrical changes were modelled, showing that a percolation mechanism could also explain atrial reentries and complex fractionated electrograms. These data from clinical, imaging and computational studies strongly suggest that intermittent and spatially unstable drivers anchoring to structural heterogeneities are a major pathophysiological mechanism in human persistent atrial fibrillation.

Journal ArticleDOI
TL;DR: Functional network connectivity within the intrinsic cardiac nervous system is reduced post‐MI and Convergent IC local circuit (processing) neurons have enhanced transduction capacity following MI.
Abstract: Key points Intrinsic cardiac (IC) neurons undergo differential morphological and phenotypic remodelling that reflects the site of myocardial infarction (MI). Afferent neural signals from the infarcted region to IC neurons are attenuated, while those from border and remote regions are preserved post-MI, giving rise to a ‘neural sensory border zone’. Convergent IC local circuit (processing) neurons have enhanced transduction capacity following MI. Functional network connectivity within the intrinsic cardiac nervous system is reduced post-MI. MI reduces the response and alters the characteristics of IC neurons to ventricular pacing. Abstract Autonomic dysregulation following myocardial infarction (MI) is an important pathogenic event. The intrinsic cardiac nervous system (ICNS) is a neural network located on the heart that is critically involved in autonomic regulation. The aims of this study were to characterize structural and functional remodelling of the ICNS post-MI in a porcine model (control (n = 16) vs. healed anteroapical MI (n = 16)). In vivo microelectrode recordings of basal activity, as well as responses to afferent and efferent stimuli, were recorded from intrinsic cardiac neurons. From control 118 neurons and from MI animals 102 neurons were functionally classified as afferent, efferent, or convergent (receiving both afferent and efferent inputs). In control and MI, convergent neurons represented the largest subpopulation (47% and 48%, respectively) and had enhanced transduction capacity following MI. Efferent inputs to neurons were maintained post-MI. Afferent inputs were attenuated from the infarcted region (19% in control vs. 7% in MI; P = 0.03), creating a ‘neural sensory border zone’, or heterogeneity in afferent information. MI reduced transduction of changes in preload (54% in control vs. 41% in MI; P = 0.05). The overall functional network connectivity, or the ability of neurons to respond to independent pairs of stimuli, within the ICNS was reduced following MI. The neuronal response was differentially decreased to ventricular vs. atrial pacing post-MI (63% in control vs. 44% in MI to ventricular pacing; P < 0.01). MI induced morphological and phenotypic changes within the ICNS. The alteration of afferent neural signals, and remodelling of convergent neurons, represents a ‘neural signature’ of ischaemic heart disease.