scispace - formally typeset
Search or ask a question

Showing papers on "Pore forming protein published in 2019"


Book ChapterDOI
TL;DR: This chapter reviews the current understanding of GSDM proteins in physiological and pathological cell death, with more focused discussions on its structural basis for G SDM activation and pore formation.
Abstract: Gasdermin is a recently identified family of pore-forming proteins consisting of Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME), and DFNB59. Gasdermin D (GSDMD) is a downstream effector of inflammasomes, which are supramolecular complexes that activate inflammatory caspases (-1, -4, and -5 in human and -1 and -11 in mouse). GSDMD contains a functionally important N-terminal domain (GSDMD-N), a C-terminal domain, and a linker in between that is recognized and cleaved by the activated inflammatory caspases. Upon cleavage, the GSDMD-N fragments translocate on the membrane and oligomerize to form membrane-embedded pores after specifically binding to acidic lipids such as phosphatidylinositol phosphates (PIPs), phosphatidic acid (PA), phosphatidylserine (PS), and cardiolipin. The pore exhibits strong membrane-disrupting cytotoxicity in mammalian cells by disrupting the osmotic potential and also serves as a gate for extracellular release of mature IL-1β and IL-18 during pyroptosis. In this chapter, we review our current understanding of GSDM proteins in physiological and pathological cell death, with more focused discussions on its structural basis for GSDM activation and pore formation.

39 citations


Journal ArticleDOI
TL;DR: This study demonstrates that OlyA6, PlyA2 and EryA bind to insect cells and to artificial lipid membranes with physiologically relevant CPE concentrations, and suggests that these aegerolysin/PlyB complexes show selective toxicity toward western corn rootworm larvae and adults and Colorado potato beetle larvae.
Abstract: Aegerolysins ostreolysin A (OlyA) and pleurotolysin A (PlyA), and pleurotolysin B (PlyB) with the membrane-attack-complex/perforin domain are proteins from the mushroom genus Pleurotus. Upon binding to sphingomyelin/cholesterol-enriched membranes, OlyA and PlyA can recruit PlyB to form multimeric bi-component transmembrane pores. Recently, Pleurotus aegerolysins OlyA, PlyA2 and erylysin A (EryA) were demonstrated to preferentially bind to artificial lipid membranes containing 50 mol% ceramide phosphoethanolamine (CPE), the main sphingolipid in invertebrate cell membranes. In this study, we demonstrate that OlyA6, PlyA2 and EryA bind to insect cells and to artificial lipid membranes with physiologically relevant CPE concentrations. Moreover, these aegerolysins permeabilize these membranes when combined with PlyB. These aegerolysin/PlyB complexes show selective toxicity toward western corn rootworm larvae and adults and Colorado potato beetle larvae. These data strongly suggest that these aegerolysin/PlyB complexes recognize CPE as their receptor molecule in the insect midgut. This mode of binding is different from those described for similar aegerolysin-based bacterial complexes, or other Bacillus thuringiensis Cry toxins, which have protein receptors. Targeting of Pleurotus aegerolysins to CPE and formation of transmembrane pores in concert with PlyB suggest the use of aegerolysin/PlyB complexes as novel biopesticides for the control of western corn rootworm and Colorado potato beetle.

33 citations


Journal ArticleDOI
TL;DR: It is demonstrated that AAV1-P0-GSDMDNterm injection into intra-sciatic schwannomas reduces the growth of these tumors and resolves tumor-associated pain without causing neurologic damage.
Abstract: Schwannomas are peripheral nerve sheath tumors associated with three genetically distinct disease entities, namely sporadic schwannoma, neurofibromatosis type-2, and schwannomatosis. Schwannomas are associated with severe disability and in cases lead to death. The primary treatment is operative resection that itself can cause neurologic damage and is at times contra-indicated due to tumor location. Given their homogenous Schwann-lineage cellular composition, schwannomas are appealing targets for gene therapy. In the present study, we have generated an adeno-associated serotype 1 virus (AAV1)-based vector delivering N-terminal of the pyroptotic gene Gasdermin-D; (GSDMDNterm) under the control of the Schwann-cell specific promoter, P0. we have demonstrated that AAV1-P0-GSDMDNterm injection into intra-sciatic schwannomas reduces the growth of these tumors and resolves tumor-associated pain without causing neurologic damage. This AAV1-P0-GSDMDNterm vector holds promise for clinical treatment of schwannomas via direct intra-tumoral injection.

19 citations


Journal ArticleDOI
11 Feb 2019
TL;DR: The role of acidic glycosphingolipids as the mechanism of action of the pore-forming protein complex βγ-CAT from the frog is identified, suggesting that βγ -CAT binds to both gangliosides and sulfatides, initiating its endocytosis and ultimately exerting its antimicrobial effects.
Abstract: Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. βγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of βγ-CAT remain elusive. Here, the actions of βγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of βγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of βγ-CAT. Finally, the ability of βγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses. Guo et al. identify the role of acidic glycosphingolipids as the mechanism of action of the pore-forming protein complex βγ-CAT from the frog. This study suggests that βγ-CAT binds to both gangliosides and sulfatides, initiating its endocytosis and ultimately exerting its antimicrobial effects.

18 citations


Book ChapterDOI
TL;DR: A liposome-based assay is highlighted that yields robust fluorescence signals for characterizing GSDM activities in vitro and may be applicable to other pore-forming proteins and ion channels in general.
Abstract: The gasdermin (GSDM) family consists of gasdermin A (GSDMA), B (GSDMB), C (GSDMC), D (GSDMD), E or DNFA5 (GSDME), and DFNB59 in human. Expressed in the skin, gastrointestinal tract, and various immune cells, GSDMs mediate homeostasis and inflammation upon activation by caspases and unknown proteases. In particular, GSDMD is activated by inflammasome-activated caspases-1/-4/-5/-11 as well as a caspase-8-mediated pathway during Yersinia infection. These caspases cleave GSDMD to release its functional N-terminal fragment (GSDMD-NT) from its auto-inhibitory C-terminal fragment (GSDMD-CT). GSDMD-NTs bind to acid lipids in mammalian cell membranes and bacterial membranes, oligomerize, and insert into the membranes to form large transmembrane pores. Consequently, cellular contents including inflammatory cytokines are released and cells can undergo pyroptosis, a highly inflammatory form of cell death. In this chapter, we summarize recent research findings and present experimental procedures to obtain pure recombinant GSDMs for biochemical studies. We highlight a liposome-based assay that yields robust fluorescence signals for characterizing GSDM activities in vitro and may be applicable to other pore-forming proteins and ion channels in general.

15 citations


Journal ArticleDOI
TL;DR: Venom from Anthopleura dowii Verrill (1869) contains a pore-forming protein suitable for designing new drugs for cancer therapy and corroborated that the loss of integrity in the plasma membrane was produced via pore formation.
Abstract: Background: Pore-forming proteins (PFP) are a class of toxins abundant in the venom of sea anemones. Owing to their ability to recognize and permeabilize cell membranes, pore-forming proteins have medical potential in cancer therapy or as biosensors. In the present study, we showed the partial purification and sequencing of a pore-forming protein from Anthopleura dowii Verrill (1869). 17. Methods: Cytolytic activity of A. dowii Verrill (1869) venom was determined via hemolysis assay in the erythrocytes of four mammals (sheep, goat, human and rabbit). The cytotoxic activity was analyzed in the human adherent lung carcinoma epithelial cells (A549) by the cytosolic lactate dehydrogenase (LDH) assay, and trypan blue staining. The venom was fractionated via ammonium sulfate precipitation gradient, dialysis, and ion exchange chromatography. The presence of a pore-forming protein in purified fractions was evaluated through hemolytic and cytotoxic assays, and the activity fraction was analyzed using the percent of osmotic protections after polyethylene glycol (PEG) treatment and mass spectrometry. 18. Results: The amount of protein at which the venom produced 50% hemolysis (HU50) was determined in hemolysis assays using erythrocytes from sheep (HU50 = 10.7 ± 0.2 μg), goat (HU50 = 13.2 ± 0.3 μg), rabbit (HU50 = 34.7 ± 0.5 μg), and human (HU50 = 25.6 ± 0.6 μg). The venom presented a cytotoxic effect in A549 cells and the protein amount present in the venom responsible for producing 50% death (IC50) was determined using a trypan blue cytotoxicity assay (1.84 ± 0.40 μg/mL). The loss of membrane integrity in the A549 cells caused by the venom was detected by the release of LDH in proportion to the amount of protein. The venom was fractionated; and the fraction with hemolytic and cytotoxic activities was analyzed by mass spectrometry. A pore-forming protein was identified. The cytotoxicity in the A549 cells produced by the fraction containing the pore-forming protein was osmotically protected by PEG-3350 Da molecular mass, which corroborated that the loss of integrity in the plasma membrane was produced via pore formation. 19. Conclusion: A. dowii Verrill (1869) venom contains a pore-forming protein suitable for designing new drugs for cancer therapy.

8 citations


Book ChapterDOI
TL;DR: Rugby protocols to investigate the effect of pore-forming proteins in supported lipid bilayers are described and both the structural reorganization of the membrane surface and the changes in the force required for membrane piercing upon incubation with this special type of proteins are described.
Abstract: Atomic force microscopy (AFM) is a form of contact microscopy that uses a very sharp tip to scan the surface of a sample. It provides a 3D image of the surface structure and in the force mode it can also be used to test the mechanical properties of the sample. AFM has been successfully applied to study the molecular mechanism of pore-forming proteins on model membranes. It gives information about both the structural reorganization of the membrane surface and the changes in the force required for membrane piercing upon incubation with this special type of proteins. Here we describe robust protocols to investigate the effect of pore-forming proteins in supported lipid bilayers .

3 citations