scispace - formally typeset
Search or ask a question

Showing papers on "Protein kinase complex published in 2021"


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used the Cytoscape 3.7.2 software to construct a PPI network of potential active compounds and potential targets of acute gouty arthritis.
Abstract: Background The incidence of gout has been rapidly increasing in recent years with the changing of diet. At present, modern medications used in the clinical treatment of gout showed several side effects, such as gastrointestinal damage and the increased risk of cardiovascular disease. The traditional Chinese prescription Simiao Powder (SMP) has a long history in the treatment of acute gouty arthritis (AGA) and has a good curative effect. However, the mechanism and target of its therapeutic effects are still not completely understood. Methods Potential active compounds (PACs) and targets of SMP were found in the TCMSP database, and the disease target genes related to AGA were obtained by searching CTD, DisGeNET, DrugBank, GeneCards, TTD, OMIM, and PharmGKB disease databases with "acute gouty arthritis" and "Arthritis, Gouty" as keywords, respectively. The network of "Traditional Chinese medicine (TCM)-PACs-potential targets of acute gouty arthritis" was constructed with the Cytoscape 3.7.2 software, and the target genes of acute gouty arthritis were intersected with genes regulated by active compounds of SMP. The resultant common gene targets were input into Cytoscape 3.7.2 software, and the BisoGenet plug-in was used to construct a PPI network. The GO functional enrichment analysis and KEGG pathway enrichment analysis of the intersecting target proteins were performed using R software and corresponding program packages. The molecular docking verification was carried out between the potentially active compounds of SMP and the core target at the same time. Results 40 active components and 203 targets were identified, of which 95 targets were common targets for the drugs and diseases. GO function enrichment analysis revealed that SMP regulated several biological processes, such as response to lipopolysaccharide and oxidative stress, RNA polymerase II transcription regulator complex, protein kinase complex, and other cellular and molecular processes, including DNA-binding transcription factor binding. Results of KEGG pathway analysis showed that SMP was associated with AGA-related pathways such as interleukin-17 (IL-17), tumor necrosis factor (TNF), p53, and hypoxia-inducible factor 1 (HIF-1) signaling pathways. The results of molecular docking showed that active compounds in SMP exhibited strong binding to five core protein receptors (TP53, FN1, ESR1, CDK2, and HSPA5). Conclusions Active components of SMP, such as quercetin, kaempferol, wogonin, baicalein, beta-sitosterol, and rutaecarpine, showed therapeutic effects on AGA. These compounds were strongly associated with core target proteins (such as TP53, FN1, ESR1, CDK2, and HSPA5). This study reveals that IL-17, TNF, p53, and HIF-1 signaling pathways mediate the therapeutic effects of SMP on AGA. These findings expand our understanding of the mechanism of SMP in the treatment of AGA.

10 citations


Journal ArticleDOI
TL;DR: The synthetic antibacterial drug clofoctol (CFT) has long been used to treat respiratory tract infections in Europe and has been found to target two biologically important proteins, the Cdc7/Dbf4 protein kinase complex and the mRNA-binding protein cold shock domain containing E1 (CSDE1) as mentioned in this paper.

9 citations


Journal ArticleDOI
TL;DR: In this article, a review with the help of in vitro and in vivo studies shows that RF could change the morphology and physiology of germ cells with affected spermatogenesis, motility and reduced concentration of male gametes.

8 citations


Journal ArticleDOI
06 Sep 2021-Yeast
TL;DR: In this paper, a simple CRISPR/Cas9-based method for seamless N-terminal tagging of yeast genes that preserves their endogenous promoter is described, which enables the generation of n-terminally tagged strains by introducing an expression vector containing the cas9 gene and a specific gRNA for cleaving the 5' end of the target gene's protein coding sequence, along with donor DNA containing the tag sequence and homology arms.
Abstract: Protein tagging is an effective method for characterizing a gene of interest. Tagging can be accomplished in vivo in Saccharomyces cerevisiae by chromosomal integration of a PCR-amplified cassette. However, common tagging cassettes are not suitable for in situ N-terminal tagging when we aim to preserve the gene's endogenous promoter. Existing methods require either two rounds of homologous recombination or a relatively complex cloning process to construct strains with N-terminal protein tags. Here, we describe a simple CRISPR/Cas9-based method for seamless N-terminal tagging of yeast genes that preserves their endogenous promoter. This method enables the generation of N-terminally tagged strains by introducing an expression vector containing the cas9 gene and a specific gRNA for cleaving the 5' end of the target gene's protein-coding sequence, along with donor DNA containing the tag sequence and homology arms. gRNA cloning was executed by inverse PCR instead of the conventional method. After verifying the tag, the Cas9 and gRNA expression plasmids were eliminated without using antibiotic-containing medium. By this method, we generated strains that express N-terminally tagged subunits of the TORC1 protein kinase complex and found that these strains are comparable to strains made by conventional methods. Thus, our method provides a cost-effective alternative for seamless N-terminal tagging in baker's yeast.

1 citations


Journal ArticleDOI
TL;DR: In this article, the TOS motif in Psk1 was found to represent an evolutionarily conserved mechanism of substrate recognition by TORC1 in lower eukaryotes.
Abstract: TOR complex 1 (TORC1) is a multi-subunit protein kinase complex that controls cellular growth in response to environmental cues. The regulatory subunits of mammalian TORC1 (mTORC1) include RAPTOR (also known as RPTOR), which recruits mTORC1 substrates, such as S6K1 (also known as RPS6KB1) and 4EBP1 (EIF4EBP1), by interacting with their TOR signaling (TOS) motif. Despite the evolutionary conservation of TORC1, no TOS motif has been described in lower eukaryotes. In the present study, we show that the fission yeast S6 kinase Psk1 contains a TOS motif that interacts with Mip1, a RAPTOR ortholog. The TOS motif in Psk1 resembles those in mammals, including the conserved phenylalanine and aspartic acid residues essential for the Mip1 interaction and TORC1-dependent phosphorylation of Psk1. The binding of the TOS motif to Mip1 is dependent on Mip1 Tyr-533, whose equivalent in RAPTOR is known to interact with the TOS motif in their co-crystals. Furthermore, we utilized the mip1-Y533A mutation to screen the known TORC1 substrates in fission yeast and successfully identified Atg13 as a novel TOS-motif-containing substrate. These results strongly suggest that the TOS motif represents an evolutionarily conserved mechanism of the substrate recognition by TORC1.

1 citations