scispace - formally typeset
Search or ask a question

Showing papers by "Al Goshaw published in 2021"


07 Jun 2021
TL;DR: In this paper, a search for chargino-$neutralino pair production in three-lepton final states with missing transverse momentum was presented, based on a dataset of 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC.
Abstract: A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.

28 citations


19 Aug 2021
TL;DR: In this paper, a search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented.
Abstract: A search for new phenomena in final states with hadronically decaying tau leptons, $b$-jets, and missing transverse momentum is presented. The analyzed dataset comprises $pp$~collision data at a center-of-mass energy of $\sqrt s = 13$ TeV with an integrated luminosity of 139/fb, delivered by the Large Hadron Collider and recorded with the ATLAS detector from 2015 to 2018. The observed data are compatible with the expected Standard Model background. The results are interpreted in simplified models for two different scenarios. The first model is based on supersymmetry and considers pair production of top squarks, each of which decays into a $b$-quark, a neutrino and a tau slepton. Each tau slepton in turn decays into a tau lepton and a nearly massless gravitino. Within this model, top-squark masses up to 1.4 TeV can be excluded at the 95% confidence level over a wide range of tau-slepton masses. The second model considers pair production of leptoquarks with decays into third-generation leptons and quarks. Depending on the branching fraction into charged leptons, leptoquarks with masses up to around 1.25 TeV can be excluded at the 95% confidence level for the case of scalar leptoquarks and up to 1.8 TeV (1.5 TeV) for vector leptoquarks in a Yang--Mills (minimal-coupling) scenario. In addition, model-independent upper limits are set on the cross section of processes beyond the Standard Model.

7 citations


07 Jun 2021
TL;DR: In this article, the ATLAS triggers used to identify jets containing $b$-hadrons were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018.
Abstract: Several improvements to the ATLAS triggers used to identify jets containing $b$-hadrons ($b$-jets) were implemented for data-taking during Run 2 of the Large Hadron Collider from 2016 to 2018. These changes include reconfiguring the $b$-jet trigger software to improve primary-vertex finding and allow more stable running in conditions with high pile-up, and the implementation of the functionality needed to run sophisticated taggers used by the offline reconstruction in an online environment. These improvements yielded an order of magnitude better light-flavour jet rejection for the same $b$-jet identification efficiency compared to the performance in Run 1 (2011-2012). The efficiency to identify $b$-jets in the trigger, and the conditional efficiency for $b$-jets that satisfy offline $b$-tagging requirements to pass the trigger are also measured. Correction factors are derived to calibrate the $b$-tagging efficiency in simulation to match that observed in data. The associated systematic uncertainties are substantially smaller than in previous measurements. In addition, $b$-jet triggers were operated for the first time during heavy-ion data-taking, using dedicated triggers that were developed to identify semileptonic $b$-hadron decays by selecting events with geometrically overlapping muons and jets.

7 citations


31 Aug 2021
TL;DR: In this paper, an exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson.
Abstract: The production of dark matter in association with Higgs bosons is predicted in several extensions of the Standard Model. An exploration of such scenarios is presented, considering final states with missing transverse momentum and $b$-tagged jets consistent with a Higgs boson. The analysis uses proton-proton collision data at a centre-of-mass energy of 13 TeV recorded by the ATLAS experiment at the LHC during Run 2, amounting to an integrated luminosity of 139 fb$^{-1}$. The analysis, when compared with previous searches, benefits from a larger dataset, but also has further improvements providing sensitivity to a wider spectrum of signal scenarios. These improvements include both an optimised event selection and advances in the object identification, such as the use of the likelihood-based significance of the missing transverse momentum and variable-radius track-jets. No significant deviation from Standard Model expectations is observed. Limits are set, at 95% confidence level, in two benchmark models with two Higgs doublets extended by either a heavy vector boson $Z'$ or a pseudoscalar singlet $a$ and which both provide a dark matter candidate $\chi$. In the case of the two-Higgs-doublet model with an additional vector boson $Z'$, the observed limits extend up to a $Z'$ mass of 3 TeV for a mass of 100 GeV for the dark matter candidate. The two-Higgs-doublet model with a dark matter particle mass of 10 GeV and an additional pseudoscalar $a$ is excluded for masses of the $a$ up to 520 GeV and 240 GeV for $\tan \beta = 1$ and $\tan \beta = 10$ respectively. Limits on the visible cross-sections are set and range from to 0.05 fb to 3.26 fb, depending on the missing transverse momentum and $b$-quark jet multiplicity requirements.

7 citations


19 Jul 2021
TL;DR: In this paper, a measurement of photon-pair production in proton-proton collisions at 13$ TeV was performed at the LHC with an integrated luminosity of 139 fb$^{-1}.
Abstract: A measurement of prompt photon-pair production in proton-proton collisions at $\sqrt{s}=13$ TeV is presented. The data were recorded by the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$. Events with two photons in the well-instrumented region of the detector are selected. The photons are required to be isolated and have a transverse momentum of $p_\mathrm{T,\gamma_{1(2)}} > 40(30)$ GeV for the leading (sub-leading) photon. The differential cross sections as functions of several observables for the diphoton system are measured and compared with theoretical predictions from state-of-the-art Monte Carlo and fixed-order calculations. The QCD predictions from next-to-next-to-leading-order calculations and multi-leg merged calculations are able to describe the measured integrated and differential cross sections within uncertainties, whereas lower-order calculations show significant deviations, demonstrating that higher-order perturbative QCD corrections are crucial for this process. The resummed predictions with parton showers additionally provide an excellent description of the low transverse-momentum regime of the diphoton system.

4 citations


20 Aug 2021
TL;DR: In this article, the energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $10
Abstract: The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $10

3 citations


16 Sep 2021
TL;DR: In this paper, the authors present the measurement of the electroweak production of two jets in association with a $Z\gamma$ pair with the Higgs boson decaying into two neutrinos.
Abstract: This paper presents the measurement of the electroweak production of two jets in association with a $Z\gamma$ pair with the $Z$ boson decaying into two neutrinos. It also presents the search for invisible or partially invisible decays of a Higgs boson with a mass of 125 GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the ATLAS detector corresponding to an integrated luminosity of 139 fb$^{-1}$. The event signature, shared by all benchmark processes considered for measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. For electroweak production of $Z\gamma$ in association with two jets, the background-only hypothesis is rejected with an observed (expected) significance of 5.2 (5.1) standard deviations. The measured fiducial cross-section for this process is 1.31$\pm$0.29 fb. Observed (expected) upper limit of 0.37 (0.34) at 95% confidence level is set on the branching ratio of a 125 GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson to a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 (0.017), assuming the 125 GeV Standard Model Higgs boson production cross-section.

2 citations


25 Oct 2021
TL;DR: In this article, a measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 ρ-fb √ n −1 −1/ρ−1/ ρ −1 ) data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV.
Abstract: A measurement of the energy asymmetry in jet-associated top-quark pair production is presented using 139 $\mathrm{fb}^{-1}$ of data collected by the ATLAS detector at the Large Hadron Collider during $pp$ collisions at $\sqrt{s}=13$ TeV. The observable measures the different probability of top and antitop quarks to have the higher energy as a function of the jet scattering angle with respect to the beam axis. The energy asymmetry is measured in the semileptonic $t\bar{t}$ decay channel, and the hadronically decaying top quark must have transverse momentum above $350$ GeV. The results are corrected for detector effects to particle level in three bins of the scattering angle of the associated jet. The measurement agrees with the SM prediction at next-to-leading-order accuracy in quantum chromodynamics in all three bins. In the bin with the largest expected asymmetry, where the jet is emitted perpendicular to the beam, the energy asymmetry is measured to be $-0.043\pm0.020$, in agreement with the SM prediction of $-0.037\pm0.003$. Interpreting this result in the framework of the Standard Model effective field theory (SMEFT), it is shown that the energy asymmetry is sensitive to the top-quark chirality in four-quark operators and is therefore a valuable new observable in global SMEFT fits.

2 citations


13 Jul 2021
TL;DR: In this paper, a search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC.
Abstract: A novel search for exotic decays of the Higgs boson into pairs of long-lived neutral particles, each decaying into a bottom quark pair, is performed using 139 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the LHC. Events consistent with the production of a Higgs boson in association with a leptonically decaying $Z$ boson are analysed. Long-lived particle (LLP) decays are reconstructed from inner-detector tracks as displaced vertices with high mass and track multiplicity relative to Standard Model processes. The analysis selection requires the presence of at least two displaced vertices, effectively suppressing Standard Model backgrounds. The residual background contribution is estimated using a data-driven technique. No excess over Standard Model predictions is observed, and upper limits are set on the branching ratio of the Higgs boson to LLPs. Branching ratios above 10% are excluded at 95% confidence level for LLP mean proper lifetimes $c\tau$ as small as 4 mm and as large as 100 mm. For LLP masses below 40 GeV, these results represent the most stringent constraint in this lifetime regime.

2 citations


22 Jun 2021
TL;DR: In this article, a measurement of four-top-quark production using proton-proton collision data at a center-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$-1}$ is presented.
Abstract: A measurement of four-top-quark production using proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider corresponding to an integrated luminosity of 139 fb$^{-1}$ is presented. Events are selected if they contain a single lepton (electron or muon) or an opposite-sign lepton pair, in association with multiple jets. The events are categorised according to the number of jets and how likely these are to contain $b$-hadrons. A multivariate technique is then used to discriminate between signal and background events. The measured four-top-quark production cross section is found to be 26$^{+17}_{-15}$ fb, with a corresponding observed (expected) significance of 1.9 (1.0) standard deviations over the background-only hypothesis. The result is combined with the previous measurement performed by the ATLAS Collaboration in the multilepton final state. The combined four-top-quark production cross section is measured to be 24$^{+7}_{-6}$ fb, with a corresponding observed (expected) signal significance of 4.7 (2.6) standard deviations over the background-only predictions. It is consistent within 2.0 standard deviations with the Standard Model expectation of 12.0$\pm$2.4 fb.

2 citations


08 Nov 2021
TL;DR: In this article, a search for new spin-0 or spin-1 bosons using events where a Higgs boson with mass $125$ GeV decays into four leptons was conducted.
Abstract: Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass $125$ GeV decays into four leptons ($\ell =$$e$,$\mu$). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: $H \rightarrow XX/ZX \rightarrow 4\ell$, where the new boson $X$ has a mass between 1 and 60 GeV. The search uses $pp$ collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s}=13$ TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into $XX/ZX$, improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where $X$ is interpreted to be a dark boson.

06 Sep 2021
TL;DR: The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector as mentioned in this paper, and it consists of 4088 silicon strip sensor modules, which achieved a data-quality efficiency of 99.85%.
Abstract: The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules. During Run 2 (2015$-$2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb$^{-1}$ to the ATLAS experiment at a centre-of-mass $pp$ collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector. Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2. It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%. Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.

01 Jul 2021
TL;DR: In this paper, a search with minimal model dependence for physics beyond the Standard Model in events featuring three or four leptons was presented, which aims to be sensitive to a wide range of potential new-physics theories simultaneously.
Abstract: A search with minimal model dependence for physics beyond the Standard Model in events featuring three or four leptons ($3\ell$ and $4\ell$, $\ell = e,\mu$) is presented. The analysis aims to be sensitive to a wide range of potential new-physics theories simultaneously. This analysis uses data from $pp$ collisions delivered by the Large Hadron Collider at a centre-of-mass energy of $\sqrt{s} = 13$ TeV and recorded with the ATLAS detector, corresponding to the full Run 2 dataset of 139 fb$^{-1}$. The $3\ell$ and $4\ell$ phase space is divided into 22 event categories according to the number of leptons in the event, the missing transverse momentum, the invariant mass of the leptons, and the presence of leptons originating from a $Z$-boson candidate. These event categories are analysed independently for the presence of deviations from the Standard Model. No statistically significant deviations from the Standard Model predictions are observed. Upper limits for all signal regions are reported in terms of the visible cross-section.

29 Sep 2021
TL;DR: In this article, the results of two studies of Higgs boson properties using the $WW^*(rightarrow e u\mu u)jj$ final state, based on a dataset corresponding to 36.1/fb collisions recorded by the ATLAS experiment at the Large Hadron Collider, were presented.
Abstract: This article presents the results of two studies of Higgs boson properties using the $WW^*(\rightarrow e u\mu u)jj$ final state, based on a dataset corresponding to 36.1/fb of $\sqrt{s}$=13 TeV proton-proton collisions recorded by the ATLAS experiment at the Large Hadron Collider. The first study targets Higgs boson production via gluon-gluon fusion and constrains the CP properties of the effective Higgs-gluon interaction. Using angular distributions and the overall rate, a value of $\tan(\alpha) = 0.0 \pm 0.4$ stat. $ \pm \,0.3$ syst is obtained for the tangent of the mixing angle for CP-even and CP-odd contributions. The second study exploits the vector-boson fusion production mechanism to probe the Higgs boson couplings to longitudinally and transversely polarised $W$ and $Z$ bosons in both the production and the decay of the Higgs boson; these couplings have not been directly constrained previously. The polarisation-dependent coupling-strength scale factors are defined as the ratios of the measured polarisation-dependent coupling strengths to those predicted by the Standard Model, and are determined using rate and kinematic information to be $a_L=0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $a_{T}=1.2 \pm 0.4 $(stat.)$ ^{+0.2}_{-0.3} $(syst.). These coupling strengths are translated into pseudo-observables, resulting in $\kappa_{VV}= 0.91^{+0.10}_{-0.18}$(stat.)$^{+0.09}_{-0.17}$(syst.) and $\epsilon_{VV} =0.13^{+0.28}_{-0.20}$ (stat.)$^{+0.08}_{-0.10}$(syst.). All results are consistent with the Standard Model predictions.

06 Sep 2021
TL;DR: The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events.
Abstract: The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with GEANT4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation -- the calorimeter shower simulation -- with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges and simulation needs of the ATLAS experiment. With highly accurate performance and a new ability to model substructure within jets, AtlFast3 is designed to be used to simulate large numbers of events for a wide range of physics processes.

06 Sep 2021
TL;DR: In this article, a search for the exotic decay of the Higgs boson into a missing transverse momentum (MV) resonance plus a pair of quarks was performed with the ATLAS detector at the Large Hadron Collider using 139 collisions at 13$ TeV.
Abstract: A search for the exotic decay of the Higgs boson ($H$) into a $b\bar{b}$ resonance plus missing transverse momentum is described. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 $\mathrm{fb}^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV. The search targets events from $ZH$ production in an NMSSM scenario where $H \rightarrow \tilde{\chi}^{0}_{2}\tilde{\chi}^{0}_{1}$, with $\tilde{\chi}^{0}_{2} \rightarrow {a} \tilde{\chi}^{0}_{1}$, where $a$ is a light pseudoscalar Higgs boson and $\tilde{\chi}^{0}_{1,2}$ are the two lightest neutralinos. The decay of the $a$ boson into a pair of $b$-quarks results in a peak in the dijet invariant mass distribution. The final-state signature consists of two leptons, two or more jets, at least one of which is identified as originating from a $b$-quark, and missing transverse momentum. Observations are consistent with Standard Model expectations and upper limits are set on the product of cross section times branching ratio for a three-dimensional scan of the masses of the $\tilde{\chi}^{0}_{2}$, $\tilde{\chi}^{0}_{1}$ and $a$ boson.

04 Oct 2021
TL;DR: In this paper, the authors presented a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, where one $a$-boson decays into a quark pair and the other into a muon pair.
Abstract: This paper presents a search for decays of the Higgs boson with a mass of 125 GeV into a pair of new pseudoscalar particles, $H\rightarrow aa$, where one $a$-boson decays into a $b$-quark pair and the other into a muon pair. The search uses 139 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of $\sqrt{s}=13$ TeV recorded between 2015 and 2018 by the ATLAS experiment at the LHC. A narrow dimuon resonance is searched for in the invariant mass spectrum between 16 GeV and 62 GeV. The largest excess of events above the Standard Model backgrounds is observed at a dimuon invariant mass of 52 GeV and corresponds to a local (global) significance of $3.3 \sigma$ ($1.7 \sigma$). Upper limits at 95% confidence level are placed on the branching ratio of the Higgs boson to the $bb\mu\mu$ final state, $\mathcal{B}(H\rightarrow aa\rightarrow bb\mu\mu)$, and are in the range $\text{(0.2-4.0)} \times 10^{-4}$, depending on the signal mass hypothesis.

25 Aug 2021
TL;DR: In this article, a search for charginos and neutralinos at the Large Hadron Collider was reported using fully hadronic final states and missing transverse momentum, and pair-produced charginos or neutralinos were explored, each decaying into a high-$p{text{T}}$ Standard Model weak boson.
Abstract: A search for charginos and neutralinos at the Large Hadron Collider is reported using fully hadronic final states and missing transverse momentum. Pair-produced charginos or neutralinos are explored, each decaying into a high-$p_{\text{T}}$ Standard Model weak boson. Fully-hadronic final states are studied to exploit the advantage of the large branching ratio, and the efficient background rejection by identifying the high-$p_{\text{T}}$ bosons using large-radius jets and jet substructure information. An integrated luminosity of 139 fb$^{-1}$ of proton-proton collision data collected by the ATLAS detector at a center-of-mass energy of 13 TeV is used. No significant excess is found beyond the Standard Model expectation. The 95% confidence level exclusion limits are set on wino or higgsino production with varying assumptions in the decay branching ratios and the type of the lightest supersymmetric particle. A wino (higgsino) mass up to 1060 (900) GeV is excluded when the lightest SUSY particle mass is below 400 (240) GeV and the mass splitting is larger than 400 (450) GeV. The sensitivity to high-mass wino and higgsino is significantly extended compared with the previous LHC searches using the other final states.

29 Nov 2021
TL;DR: In this paper, the azimuthal anisotropy coefficients for jets in Pb+Pb collisions at the LHC were measured as a function of the transverse momentum of the jets between 71 GeV and 398 GeV.
Abstract: The azimuthal variation of jet yields in heavy-ion collisions provides information about the path-length dependence of the energy loss experienced by partons passing through the hot, dense nuclear matter known as the quark-gluon plasma. This paper presents the azimuthal anisotropy coefficients $v_2$, $v_3$, and $v_4$ measured for jets in Pb+Pb collisions at $\sqrt{s_{NN}} =$ 5.02 TeV using the ATLAS detector at the LHC. The measurement uses data collected in 2015 and 2018, corresponding to an integrated luminosity of 2.2 nb$^{-1}$. The $v_n$ values are measured as a function of the transverse momentum of the jets between 71 GeV and 398 GeV and the event centrality. A nonzero value of $v_2$ is observed in all but the most central collisions. The value of $v_2$ is largest for jets with lower transverse momentum, with values up to 0.05 in mid-central collisions. A smaller, nonzero value of $v_3$ of approximately 0.01 is measured with no significant dependence on jet $p_T$ or centrality, suggesting that fluctuations in the initial state play a small but distinct role in jet energy loss. No significant deviation of $v_4$ from zero is observed in the measured kinematic region.

30 Nov 2021
TL;DR: In this article, the authors reported constraints on Higgs boson production with transverse momentum above 1 TeV, which corresponds to an integrated luminosity of 136 fb$^{-1}.
Abstract: This paper reports constraints on Higgs boson production with transverse momentum above 1 TeV. The analyzed data from proton-proton collisions at a center-of-mass energy of 13 TeV were recorded with the ATLAS detector at the Large Hadron Collider from 2015 to 2018 and correspond to an integrated luminosity of 136 fb$^{-1}$. Higgs bosons decaying into $b\bar{b}$ are reconstructed as single large-radius jets recoiling against a hadronic system and identified by the experimental signature of two $b$-hadron decays. The experimental techniques are validated in the same kinematic regime using the $Z\rightarrow b\bar{b}$ process. The 95% confidence-level upper limit on the cross section for Higgs boson production with transverse momentum above 450 GeV is 115 fb, and above 1 TeV it is 9.6 fb. The Standard Model predictions in the same kinematic regions are 18.4 fb and 0.13 fb, respectively.

21 Sep 2021
TL;DR: In this paper, a technique was presented to measure the efficiency with which $c$-jets are mistagged as bjets (mistagging efficiency) using $t\bar{t}$ events, where one of the $W$ bosons decays into an electron or muon and a neutrino and the other decays to a quark-antiquark pair.
Abstract: A technique is presented to measure the efficiency with which $c$-jets are mistagged as b-jets (mistagging efficiency) using $t\bar{t}$ events, where one of the $W$ bosons decays into an electron or muon and a neutrino and the other decays into a quark-antiquark pair. The measurement utilises the relatively large and known $W\to cs$ branching ratio, which allows a measurement to be made in an inclusive $c$-jet sample. The data sample used was collected by the ATLAS detector at $\sqrt{s} = 13$ TeV and corresponds to an integrated luminosity of 139 fb$^{-1}$. Events are reconstructed using a kinematic likelihood technique which selects the mapping between jets and $t\bar{t}$ decay products that yields the highest likelihood value. The distribution of the $b$-tagging discriminant for jets from the hadronic $W$ decays in data is compared with that in simulation to extract the mistagging efficiency as a function of jet transverse momentum. The total uncertainties are in the range 3%-17%. The measurements generally agree with those in simulation but there are some differences in the region corresponding to the most stringent $b$-jet tagging requirement.

01 Sep 2021
TL;DR: In this paper, a measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented.
Abstract: Heavy-flavour hadron production provides information about the transport properties and microscopic structure of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions. A measurement of the muons from semileptonic decays of charm and bottom hadrons produced in Pb+Pb and $pp$ collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV with the ATLAS detector at the Large Hadron Collider is presented. The Pb+Pb data were collected in 2015 and 2018 with sampled integrated luminosities of $208~\mathrm{\mu b}^{-1}$ and $38~\mathrm{\mu b^{-1}}$, respectively, and $pp$ data with a sampled integrated luminosity of $1.17~\mathrm{pb}^{-1}$ were collected in 2017. Muons from heavy-flavour semileptonic decays are separated from the light-flavour hadronic background using the momentum imbalance between the inner detector and muon spectrometer measurements, and muons originating from charm and bottom decays are further separated via the muon track's transverse impact parameter. Differential yields in Pb+Pb collisions and differential cross sections in $pp$ collisions for such muons are measured as a function of muon transverse momentum from 4 GeV to 30 GeV in the absolute pseudorapidity interval $|\eta| < 2$. Nuclear modification factors for charm and bottom muons are presented as a function of muon transverse momentum in intervals of Pb+Pb collision centrality. The measured nuclear modification factors quantify a significant suppression of the yields of muons from decays of charm and bottom hadrons, with stronger effects for muons from charm hadron decays.

19 Aug 2021
TL;DR: In this article, a search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional quarks is reported, where the sensitivity is improved by tagging at least one lower and two highest quarks.
Abstract: A search optimized for new heavy particles decaying to two $b$-quarks and produced in association with additional $b$-quarks is reported. The sensitivity is improved by $b$-tagging at least one lower-$p_\text{T}$ jet in addition to the two highest-$p_\text{T}$ jets. The data used in this search correspond to an integrated luminosity of 103 $\text{fb}^{-1}$ collected with a dedicated trijet trigger during the 2017 and 2018 $\sqrt{s} = 13$ TeV proton$-$proton collision runs with the ATLAS detector at the LHC. The search looks for resonant peaks in the $b$-tagged dijet invariant mass spectrum over a smoothly falling background. The background is estimated with an innovative data-driven method based on orthonormal functions. The observed $b$-tagged dijet invariant mass spectrum is compatible with the background-only hypothesis. Upper limits at 95% confidence level on a heavy vector-boson production cross section times branching ratio to a pair of $b$-quarks are derived.

30 Nov 2021
TL;DR: In this article, a search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying $Z$ boson, are presented.
Abstract: A search for invisible decays of the Higgs boson as well as searches for dark matter candidates, produced together with a leptonically decaying $Z$ boson, are presented. The analysis is performed using proton-proton collisions at a centre-of-mass energy of 13 TeV, delivered by the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$ and recorded by the ATLAS experiment. Assuming Standard Model cross-sections for $ZH$ production, the upper limit on the branching ratio of the Higgs boson to invisible particles is found to be 19% at the 95% confidence level. Exclusion limits are also set for simplified dark matter models and 2HDM$+a$ models.

26 Aug 2021
TL;DR: In this paper, the fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018.
Abstract: The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.