scispace - formally typeset
Search or ask a question

Showing papers by "Alain Laederach published in 2008"


Journal ArticleDOI
TL;DR: This work achieves the throughput and data quality necessary for genomic-scale structural analysis by combining fluorophore labeling of nucleic acids with novel quantitation algorithms and implemented these algorithms in the CAFA (capillary automated footprinting analysis) open-source software.
Abstract: The use of capillary electrophoresis with fluorescently labeled nucleic acids revolutionized DNA sequencing, effectively fueling the genomic revolution. We present an application of this technology for the high-throughput structural analysis of nucleic acids by chemical and enzymatic mapping (‘footprinting’). We achieve the throughput and data quality necessary for genomic-scale structural analysis by combining fluorophore labeling of nucleic acids with novel quantitation algorithms. We implemented these algorithms in the CAFA (capillary automated footprinting analysis) open-source software that is downloadable gratis from https://simtk.org/home/cafa. The accuracy, throughput and reproducibility of CAFA analysis are demonstrated using hydroxyl radical footprinting of RNA. The versatility of CAFA is illustrated by dimethyl sulfate mapping of RNA secondary structure and DNase I mapping of a protein binding to a specific sequence of DNA. Our experimental and computational approach facilitates the acquisition of high-throughput chemical probing data for solution structural analysis of nucleic acids.

111 citations


Journal ArticleDOI
TL;DR: This work introduces a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states and validated this technology by recapitulating the unfolded and native states of a well studied model RNA.
Abstract: The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendered their characterization by high-resolution structural approaches difficult or even intractable. Here we introduce a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states. Multiplexed hydroxyl radical (·OH) cleavage analysis (MOHCA) enables the high-throughput detection of numerous pairs of contacting residues via random incorporation of radical cleavage agents followed by two-dimensional gel electrophoresis. We validated this technology by recapitulating the unfolded and native states of a well studied model RNA, the P4–P6 domain of the Tetrahymena ribozyme, at subhelical resolution. We then applied MOHCA to a recently discovered third state of the P4–P6 RNA that is stabilized by high concentrations of monovalent salt and whose partial order precludes conventional techniques for structure determination. The three-dimensional portrait of a compact, non-native RNA state reveals a well ordered subset of native tertiary contacts, in contrast to the dynamic but otherwise similar molten globule states of proteins. With its applicability to nearly any solution state, we expect MOHCA to be a powerful tool for illuminating the many functional structures of large RNA molecules and RNA/protein complexes.

89 citations


Journal ArticleDOI
TL;DR: The semi-automated footprinting analysis (SAFA) as discussed by the authors was developed to analyze hydroxyl radical (*OH) footprints, and it effectively quantifies the gel images obtained with other types of chemical mapping probes.
Abstract: We have developed protocols for rapidly quantifying the band intensities from nucleic acid chemical mapping gels at single-nucleotide resolution. These protocols are implemented in the software SAFA (semi-automated footprinting analysis) that can be downloaded without charge from http://safa.stanford.edu. The protocols implemented in SAFA have five steps: (i) lane identification, (ii) gel rectification, (iii) band assignment, (iv) model fitting and (v) band-intensity normalization. SAFA enables the rapid quantitation of gel images containing thousands of discrete bands, thereby eliminating a bottleneck to the analysis of chemical mapping experiments. An experienced user of the software can quantify a gel image in approximately 20 min. Although SAFA was developed to analyze hydroxyl radical (*OH) footprints, it effectively quantifies the gel images obtained with other types of chemical mapping probes. We also present a series of tutorial movies that illustrate the best practices and different steps in the SAFA analysis as a supplement to this protocol.

78 citations


Journal ArticleDOI
TL;DR: This review explores recent studies that characterize the dominant pathways by which RNA folds, structural and dynamic features of intermediates that populate the folding landscape, and the energy barriers that separate the distinct steps of the folding process.

55 citations