scispace - formally typeset
Search or ask a question

Showing papers by "Alfons J. M. Stams published in 2006"


Journal ArticleDOI
TL;DR: This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities by addressing the fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor.
Abstract: Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory syntrophic consortia of proton-reducing acetogenic bacteria and hydrogen-consuming methanogenic archaea. Anaerobic microorganisms that use insoluble electron acceptors for growth, such as iron- and manganese-oxide as well as inert graphite electrodes in microbial fuel cells, also transfer electrons exocellularly. Soluble compounds, like humic substances, quinones, phenazines and riboflavin, can function as exocellular electron mediators enhancing this type of anaerobic respiration. However, direct electron transfer by cell-cell contact is important as well. This review addresses the mechanisms of exocellular electron transfer in anaerobic microbial communities. There are fundamental differences but also similarities between electron transfer to another microorganism or to an insoluble electron acceptor. The physical separation of the electron donor and electron acceptor metabolism allows energy conservation in compounds as methane and hydrogen or as electricity. Furthermore, this separation is essential in the donation or acceptance of electrons in some environmental technological processes, e.g. soil remediation, wastewater purification and corrosion.

375 citations


Journal ArticleDOI
TL;DR: It is proposed here that the different types of granules reflect the different stages in the life cycle of granule, and may be valuable to easily select appropriate seed sludges to start up other reactors.
Abstract: Methanogenic granules from an anaerobic bioreactor that treated wastewater of a beer brewery consisted of different morphological types of granules. In this study, the microbial compositions of the different granules were analyzed by molecular microbiological techniques: cloning, denaturing gradient gel electrophoresis and fluorescent in situ hybridization (FISH), and scanning and transmission electron microscopy. We propose here that the different types of granules reflect the different stages in the life cycle of granules. Young granules were small, black, and compact and harbored active cells. Gray granules were the most abundant granules. These granules have a multilayer structure with channels and void areas. The core was composed of dead or starving cells with low activity. The brown granules, which were the largest granules, showed a loose and amorphous structure with big channels that resulted in fractured zones and corresponded to the older granules. Firmicutes (as determined by FISH) and Nitrospira and Deferribacteres (as determined by cloning and sequencing) were the predominant Bacteria. Remarkably, Firmicutes could not be detected in the brown granules. The methanogenic Archaea identified were Methanosaeta concilii (70 to 90% by FISH and cloning), Methanosarcina mazei, and Methanospirillum spp. The phenotypic appearance of the granules reflected the physiological condition of the granules. This may be valuable to easily select appropriate seed sludges to start up other reactors.

164 citations


Journal ArticleDOI
TL;DR: CO utilization by various anaerobic micro-organisms and their possible role in biotechnological processes, with a focus on hydrogen production and bio-desulfurization are reviewed.
Abstract: Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotec...

137 citations


Journal ArticleDOI
TL;DR: The results suggest that anaerobic dye reduction is not a universal property among methanogenic archaea and that redox mediators may improve reductive decoulorisations by allowing some microbial groups commonly found in wastewater treatment systems to participate more effectively.

72 citations


Journal ArticleDOI
TL;DR: Interestingly, the enrichments could be sustained only in the presence of MT and did not utilize any of the other typical substrates for methylotrophic methanogens, such as methanol, methyl amine, or dimethylsulfide.
Abstract: In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30 degrees C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6 mM MT was applied, corresponding to a volumetric loading rate of 16.5 mmol liter-1 day-1. The archaeal community within the reactor was characterized by anaerobic culturing and denaturing gradient gel electrophoresis analysis, cloning, and sequencing of 16S rRNA genes and quantitative PCR. Initially, MT-fermenting methanogenic archaea related to members of the genus Methanolobus were enriched in the reactor. Later, they were outcompeted by Methanomethylovorans hollandica, which was detected in aggregates but not inside the granules that originated from the inoculum, the microbial composition of which remained fairly unchanged. Possibly other species within the Methanosarcinacaea also contributed to the fermentation of MT, but they were not enriched by serial dilution in liquid media. The archaeal community within the granules, which was dominated by Methanobacterium beijingense, did not change substantially during the reactor operation. Some of the species related to Methanomethylovorans hollandica were enriched by serial dilutions, but their growth rates were very low. Interestingly, the enrichments could be sustained only in the presence of MT and did not utilize any of the other typical substrates for methylotrophic methanogens, such as methanol, methyl amine, or dimethylsulfide.

67 citations


Journal ArticleDOI
TL;DR: The start-up of a full-scale synthesis gas-fed gas-lift reactor treating metal and sulfate-rich wastewater was investigated and heterotrophic Sulfate-Reducing Bacteria (SRB) were dominant, despite the predominance of SRB, which have a lower hydrogen threshold.

55 citations


Journal ArticleDOI
TL;DR: The results define the operational limits of anaerobic technologies for the treatment of volatile organic sulfur compounds in sulfide‐containing wastewater streams.
Abstract: A variety of environmental samples was screened for anaerobic degradation of methanethiol, ethanethiol, propanethiol, dimethylsulfide, and dimethyldisulfide. All sludge and sediment samples degraded methanethiol, dimethylsulfide, and dimethyldisulfide anaerobically. In contrast, ethanethiol and propanethiol were not degraded by the samples investigated under any of the conditions tested. Methanethiol, dimethylsulfide, and dimethyldisulfide were mainly degraded by methanogenic archaea. In the presence of sulfate and the methanogenic inhibitor bromoethane sulfonate, degradation of these compounds coupled to sulfate reduction occurred as well, but at much lower rates. Besides their biodegradability, also the toxicity of methanethiol, ethanethiol, and propanethiol to methanogenesis with methanol, acetate, and H2/CO2 as the substrates was assessed. The 50% inhibition concentration of methanethiol on the methane production from these substrates ranged between 7 and 10 mM. The 50% inhibition concentration values of ethanethiol and propanethiol for the degradation of methanol and acetate were between 6 and 8 mM, whereas hydrogen consumers were less affected by ethanethiol and propanethiol, as indicated by their higher 50% inhibition concentration (14 mM). Sulfide inhibited methanethiol degradation already at relatively low concentrations: methanethiol degradation was almost completely inhibited at an initial sulfide concentration of 8 mM. These results define the operational limits of anaerobic technologies for the treatment of volatile organic sulfur compounds in sulfide-containing wastewater streams.

45 citations


Journal ArticleDOI
TL;DR: This is the first column study where benzene biodegradation at a high rate coupled with anaerobic chlorate reduction is observed, and indicates that oxygen produced during chlorate Reduction indeed is used for the activation of benzene.
Abstract: Perchlorate and chlorate are electron acceptors that during reduction result in the formation of molecular oxygen. The produced oxygen can be used for activation of anaerobic persistent pollutants, like benzene. In this study chlorate was tested as potential electron acceptor to stimulate benzene degradation in anoxic polluted soil column. A chlorate amended benzene polluted soil column was operated over a period of 500 days. Benzene was immediately degraded in the column after start up, and benzene removal recovered completely after omission of chlorate or a too high influent chlorate concentration (22 mM). Mass balance calculations showed that per mole of benzene five mole of chlorate were reduced. At the end of the experiment higher loading rates were applied to measure the maximal benzene degradation rate in this system; a breakthrough of benzene was not observed. The average benzene degradation rate over this period was 31 μmol l−1 h−1 with a maximal of 78 μmol l−1 h−1. The high degradation rate and the necessity of chlorate indicate that oxygen produced during chlorate reduction indeed is used for the activation of benzene. This is the first column study where benzene biodegradation at a high rate coupled with anaerobic chlorate reduction is observed.

24 citations