scispace - formally typeset
Search or ask a question

Showing papers by "Angélique Melet published in 2014"


Journal ArticleDOI
TL;DR: A review of recent advancements and current knowledge gaps and important emerging research directions can be found in this article, with a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea.
Abstract: The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Nino-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.

126 citations


Journal ArticleDOI
TL;DR: In this article, the combined effects of internal tide and lee wave-driven mixing on the ocean state were explored using the Geophysical Fluid Dynamics Laboratory CM2G ocean-ice-atmosphere coupled model.
Abstract: Diapycnal mixing plays a key role in maintaining the ocean stratification and the meridional overturning circulation (MOC). In the ocean interior, it is mainly sustained by breaking internal waves. Two important classes of internal waves are internal tides and lee waves, generated by barotropic tides and geostrophic flows interacting with rough topography, respectively. Currently, regarding internal wave–driven mixing, most climate models only explicitly parameterize the local dissipation of internal tides. In this study, the authors explore the combined effects of internal tide– and lee wave–driven mixing on the ocean state. A series of sensitivity experiments using the Geophysical Fluid Dynamics Laboratory CM2G ocean–ice–atmosphere coupled model are performed, including a parameterization of lee wave–driven mixing using a recent estimate for the global map of energy conversion into lee waves, in addition to the tidal mixing parameterization. It is shown that, although the global energy input in ...

57 citations


Journal ArticleDOI
TL;DR: In this paper, a high 1/36° resolution numerical model is used to study the ocean circulation in the Solomon Sea, which reproduces the high levels of mesoscale eddy activity observed in the ocean.
Abstract: A high 1/36° resolution numerical model is used to study the ocean circulation in the Solomon Sea. An evaluation of the model with (the few) available observation shows that the 1/36° resolution model realistically simulates the Solomon Sea circulations. The model notably reproduces the high levels of mesoscale eddy activity observed in the Solomon Sea. With regard to previous simulations at 1/12° resolution, the average eddy kinetic energy levels are increased by up to ∼30–40% in the present 1/36° simulation, and the enhancement extends at depth. At the surface, the eddy kinetic energy level is maximum in March-April-May and is minimum in December-January-February. The high subsurface variability is related to the variability of the western boundary current (New Guinea Coastal Undercurrent). Moreover, the emergence of submesoscales is clearly apparent in the present simulations. A spectral analysis is conducted in order to evidence and characterize the modeled submesoscale dynamics and to provide a spectral view of scales interactions. The corresponding spectral slopes show a strong consistency with the Surface Quasi-Geostrophic turbulence theory.

23 citations


Journal ArticleDOI
TL;DR: In this article, a regional 1/36 degrees numerical model of a key sub region of the southwestern Pacific Ocean: the Solomon Sea is discussed, which is two-way embedded into a 1/12 degrees resolution basin-scale model, itself one-way nested in a global 1/16 degrees resolution ocean model.
Abstract: The implementation of a regional 1/36 degrees numerical model of a key sub region of the southwestern Pacific Ocean: the Solomon Sea is discussed.This model is two-way embedded into a 1/12 degrees resolution basin-scale model, itself one-way nested in a global 1/12 degrees resolution ocean model.The three main questions discussed in this study concern (i) the bathymetry, (ii) the setting up of adequate forcing functions, especially regarding the wind stress parameterization, and (iii) the strategy used to embed and conned the model configurations together Such a system, exemplified here for the Solomon Sea, represents a prototype of embedded model systems that are considered in operational oceanography.

17 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the feasibility and accuracy of the inversion of the dynamical submesoscale information contained in high-resolution images of sea surface temperature (SST) or salinity (SSS) to improve the estimation of oceanic surface currents.
Abstract: A high-resolution realistic numerical model of the Solomon Sea, which exhibits a high level of variability at mesoscales and submesoscales, is used to explore new avenues for data assimilation. Image data assimilation represents a powerful methodology to integrate information from high-resolution observations such as satellite sea surface temperature or chlorophyll, or high-resolution altimetric sea surface height that will be observed in the forthcoming SWOT mission. The present study investigates the feasibility and accuracy of the inversion of the dynamical submesoscale information contained in high-resolution images of sea surface temperature (SST) or salinity (SSS) to improve the estimation of oceanic surface currents. The inversion method is tested in the context of twin experiments, with SST and SSS data provided by a model of the Solomon Sea. For that purpose, synthetic tracer images are built by binarizing the norm of the gradient of SST, SSS or spiciness. The binarized tracer images are compared to the dynamical image which is derived from the Finite-Size Lyapunov Exponents. The adjustment of the dynamical image to the tracer image provides the optimal correction to be applied on the surface velocity field. The method is evaluated by comparing the result of the inversion to the reference model solution. The feasibility of the inversion of various images (SST, SSS, both SST and SSS or spiciness) is explored on two small areas of the Solomon Sea. We show that errors in the surface velocity field can be substantially reduced through the inversion of tracer images.

14 citations