scispace - formally typeset
Search or ask a question

Showing papers by "Arjun Raj published in 2015"


Journal ArticleDOI
TL;DR: A systematic, high-resolution survey of lncRNA localization reveals aspects of lNCRNAs that are similar to mRNAs, such as cell-to-cell variability, but also several distinct properties that may correspond to particular functional roles.
Abstract: Long non-coding RNAs (lncRNAs) have been implicated in diverse biological processes. In contrast to extensive genomic annotation of lncRNA transcripts, far fewer have been characterized for subcellular localization and cell-to-cell variability. Addressing this requires systematic, direct visualization of lncRNAs in single cells at single-molecule resolution. We use single-molecule RNA-FISH to systematically quantify and categorize the subcellular localization patterns of a representative set of 61 lncRNAs in three different cell types. Our survey yields high-resolution quantification and stringent validation of the number and spatial positions of these lncRNA, with an mRNA set for comparison. Using this highly quantitative image-based dataset, we observe a variety of subcellular localization patterns, ranging from bright sub-nuclear foci to almost exclusively cytoplasmic localization. We also find that the low abundance of lncRNAs observed from cell population measurements cannot be explained by high expression in a small subset of ‘jackpot’ cells. Additionally, nuclear lncRNA foci dissolve during mitosis and become widely dispersed, suggesting these lncRNAs are not mitotic bookmarking factors. Moreover, we see that divergently transcribed lncRNAs do not always correlate with their cognate mRNA, nor do they have a characteristic localization pattern. Our systematic, high-resolution survey of lncRNA localization reveals aspects of lncRNAs that are similar to mRNAs, such as cell-to-cell variability, but also several distinct properties. These characteristics may correspond to particular functional roles. Our study also provides a quantitative description of lncRNAs at the single-cell level and a universally applicable framework for future study and validation of lncRNAs.

559 citations


Journal ArticleDOI
TL;DR: It is shown that transcript abundance correlates with cellular volume at the single-cell level due to increased global transcription in larger cells, and a separate mechanism for gene dosage compensation after DNA replication that enables proper transcriptional output during early and late S phase is revealed.

444 citations


Journal ArticleDOI
TL;DR: The dynamics of looped enhancer contacts during synchronous transcription elongation are characterized to support a model in which the gene body changes its position relative to a stable enhancer-promoter complex, which has broad ramifications for enhancer function and architectural models of transcriptional elongation.
Abstract: Enhancers govern transcription through multiple mechanisms, including the regulation of elongation by RNA polymerase II (RNAPII). We characterized the dynamics of looped enhancer contacts during synchronous transcription elongation. We found that many distal enhancers form stable contacts with their target promoters during the entire interval of elongation. Notably, we detected additional dynamic enhancer contacts throughout the gene bodies that track with elongating RNAPII and the leading edge of RNA synthesis. These results support a model in which the gene body changes its position relative to a stable enhancer-promoter complex, which has broad ramifications for enhancer function and architectural models of transcriptional elongation.

79 citations


Book ChapterDOI
TL;DR: A protocol for the application of single-molecule RNA FISH to the study of noncoding RNA as well as an experimental procedure for validating legitimate signals are presented.
Abstract: Single-molecule RNA fluorescence in situ hybridization is a technique that holds great potential for the study of long noncoding RNA. It enables quantification and spatial resolution of single RNA molecules within cells via hybridization of multiple, labeled nucleic acid probes to a target RNA. It has recently become apparent that single-molecule RNA FISH probes targeting noncoding RNA are more prone to off-target binding yielding spurious results than when targeting mRNA. Here we present a protocol for the application of single-molecule RNA FISH to the study of noncoding RNA as well as an experimental procedure for validating legitimate signals.

67 citations


Journal ArticleDOI
30 Oct 2015-Mbio
TL;DR: A new natural viral motif present in DVGs that maximizes viral recognition by the intracellular sensor RIG-I, allowing fast and strong antiviral responses even in the presence of viral-encoded immune antagonists is defined.
Abstract: Stimulation of the antiviral response depends on the sensing of viral pathogen-associated molecular patterns (PAMPs) by specialized cellular proteins. During infection with RNA viruses, 5=-di- or -triphosphates accompanying specific single or double-stranded RNA motifs trigger signaling of intracellular RIG-I-like receptors (RLRs) and initiate the antiviral re- sponse. Although these molecular signatures are present during the replication of many viruses, it is unknown whether they are sufficient for strong activation of RLRs during infection. Immunostimulatory defective viral genomes (iDVGs) from Sendai virus (SeV) are among the most potent natural viral triggers of antiviral immunity. Here we describe an RNA motif (DVG70-114) that is essential for the potent immunostimulatory activity of 5=-triphosphate-containing SeV iDVGs. DVG70-114enhances viral sensing by the host cell independently of the long stretches of complementary RNAflanking the iDVGs, and it retains its stimulatory potential when transferred to otherwise inert viral RNA. In vitro analysis showed that DVG 70-114 augments the binding of RIG-I to viral RNA and promotes enhanced RIG-I polymerization, thereby facilitating the onset of the antiviral response. Together, our results define a new natural viral PAMP enhancer motif that promotes viral recognition by RLRs and confers potent immu- nostimulatory activity to viral RNA. IMPORTANCE A discrete group of molecular motifs, including 5=-triphosphates associated with double-stranded RNA, have been identified as essential for the triggering of antiviral immunity. Most RNA viruses expose these motifs during their replication; however, successful viruses normally evade immune recognition and replicate to high levels before detection, indicating that unknown factors drive antiviral immunity. DVGs from SeV are among the most potent natural viral stimuli of the antiviral response known to date. These studies define a new natural viral motif present in DVGs that maximizes viral recognition by the intracellular sensor RIG-I, allowing fast and strong antiviral responses even in the presence of viral-encoded immune antagonists. This motif can be harnessed to increase the immunostimulatory potential of otherwise inert viral RNAs and represents a novel immunostimulatory enhancer that could be used in the development of vaccine adjuvants and antivirals.

48 citations


Journal ArticleDOI
TL;DR: A broad embryonic role is identified for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons, and the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors is provided.
Abstract: While many transcriptional regulators of pluripotent and terminally differentiated states have been identified, regulation of intermediate progenitor states is less well understood. Previous high throughput cellular resolution expression studies identified dozens of transcription factors with lineage-specific expression patterns in C. elegans embryos that could regulate progenitor identity. In this study we identified a broad embryonic role for the C. elegans OTX transcription factor ceh-36, which was previously shown to be required for the terminal specification of four neurons. ceh-36 is expressed in progenitors of over 30% of embryonic cells, yet is not required for embryonic viability. Quantitative phenotyping by computational analysis of time-lapse movies of ceh-36 mutant embryos identified cell cycle or cell migration defects in over 100 of these cells, but most defects were low-penetrance, suggesting redundancy. Expression of ceh-36 partially overlaps with that of the PITX transcription factor unc-30. unc-30 single mutants are viable but loss of both ceh-36 and unc-30 causes 100% lethality, and double mutants have significantly higher frequencies of cellular developmental defects in the cells where their expression normally overlaps. These factors are also required for robust expression of the downstream developmental regulator mls-2/HMX. This work provides the first example of genetic redundancy between the related yet evolutionarily distant OTX and PITX families of bicoid class homeodomain factors and demonstrates the power of quantitative developmental phenotyping in C. elegans to identify developmental regulators acting in progenitor cells.

31 citations


Journal ArticleDOI
02 Apr 2015-Oncogene
TL;DR: The results show that Dnmt3a is predominantly expressed in the stem/progenitor cell compartment of tumors and that deletion of DnMT3a inhibits the earliest stages of intestinal tumor development.
Abstract: Aberrant de novo methylation of DNA is considered an important mediator of tumorigenesis. To investigate the role of de novo DNA methyltransferase 3a (Dnmt3a) in intestinal tumor development, we analyzed the expression of Dnmt3a in murine colon crypts, murine colon adenomas and human colorectal cancer using RNA fluorescence in situ hybridization (FISH), quantitative PCR and immunostaining. Following conditional deletion of Dnmt3a in the colon of APC(Min/+) mice, we analyzed tumor numbers, genotype of macroadenomas and laser dissected microadenomas, global and regional DNA methylation and gene expression. Our results showed increased Dnmt3a expression in colon adenomas of APC(Min/+) mice and human colorectal cancer samples when compared with control tissue. Interestingly, in tumor tissue, RNA FISH analysis showed highest Dnmt3a expression in Lgr5-positive stem/progenitor cells. Deletion of Dnmt3a in APC(Min/+) mice reduced colon tumor numbers by ~40%. Remaining adenomas and microadenomas almost exclusively contained the non-recombined Dnmt3a allele; no tumors composed of the inactivated Dnmt3a allele were detected. DNA methylation was reduced at the Oct4, Nanog, Tff2 and Cdkn1c promoters and expression of the tumor-suppressor genes Tff2 and Cdkn1c was increased. In conclusion, our results show that Dnmt3a is predominantly expressed in the stem/progenitor cell compartment of tumors and that deletion of Dnmt3a inhibits the earliest stages of intestinal tumor development.

30 citations


Journal ArticleDOI
TL;DR: The results establish RNA FISH as a methodology with potential for viral point-of-care diagnostics and an automated image processing pipeline to robustly identify uninfected and infected samples.
Abstract: Viral infections are a major cause of human disease, but many require molecular assays for conclusive diagnosis. Current assays typically rely on RT-PCR or ELISA; however, these tests often have limited speed, sensitivity or specificity. Here, we demonstrate that rapid RNA FISH is a viable alternative method that could improve upon these limitations. We describe a platform beginning with software to generate RNA FISH probes both for distinguishing related strains of virus (even those different by a single base) and for capturing large numbers of strains simultaneously. Next, we present a simple fluidic device for reliably performing RNA FISH assays in an automated fashion. Finally, we describe an automated image processing pipeline to robustly identify uninfected and infected samples. Together, our results establish RNA FISH as a methodology with potential for viral point-of-care diagnostics.

25 citations


Journal ArticleDOI
TL;DR: The results suggest that the observed enrichment of lineage-specific marker gene expression in Nanog-negative cells is associated with spontaneous differentiation of a subset of these cells rather than the more random expression that may be associated with reversible lineage priming.
Abstract: Populations of cultured mouse embryonic stem cells (ESCs) exhibit a subfraction of cells expressing uncharacteristically low levels of pluripotency markers such as Nanog Yet, the extent to which individual Nanog-negative cells are differentiated, both from ESCs and from each other, remains unclear Here, we show the transcriptome of Nanog-negative cells exhibits expression of classes of genes associated with differentiation that are not yet active in cells exposed to differentiation conditions for one day Long non-coding RNAs, however, exhibit more changes in expression in the one-day-differentiated cells than in Nanog-negative cells These results are consistent with the concept that Nanog-negative cells may contain subpopulations of both lineage-primed and differentiated cells Single cell analysis showed that Nanog-negative cells display substantial and coherent heterogeneity in lineage marker expression in progressively nested subsets of cells exhibiting low levels of Nanog, then low levels of Oct4, and then a set of lineage markers, which express intensely in a small subset of these more differentiated cells Our results suggest that the observed enrichment of lineage-specific marker gene expression in Nanog-negative cells is associated with spontaneous differentiation of a subset of these cells rather than the more random expression that may be associated with reversible lineage priming

24 citations


Journal ArticleDOI
TL;DR: The limitations of the small-scale molecular systems biology approach are outlined with examples from research into genetic algorithms, genetics, transcriptional network analysis, and genomics and the development of new, intelligent, computational tools are proposed.
Abstract: Small-scale molecular systems biology, by which we mean the understanding of a how a few parts work together to control a particular biological process, is predicated on the assumption that cellular regulation is arranged in a circuit-like structure. Results from the omics revolution have upset this vision to varying degrees by revealing a high degree of interconnectivity, making it difficult to develop a simple, circuit-like understanding of regulatory processes. We here outline the limitations of the small-scale systems biology approach with examples from research into genetic algorithms, genetics, transcriptional network analysis, and genomics. We also discuss the difficulties associated with deriving true understanding from the analysis of large data sets and propose that the development of new, intelligent, computational tools may point to a way forward. Throughout, we intentionally oversimplify and talk about things in which we have little expertise, and it is likely that many of our arguments are wrong on one level or another. We do believe, however, that developing a true understanding via molecular systems biology will require a fundamental rethinking of our approach, and our goal is to provoke thought along these lines.

20 citations


Journal ArticleDOI
TL;DR: It is suggested that lineage-specific receptor levels can modulate potencies of cues to achieve robust commitment decisions, and a new model for exclusive decision making is proposed that explicitly incorporates signals from extrinsic cues.
Abstract: Hematopoietic lineage commitment is regulated by cytokines and master transcription factors, but it remains unclear how a progenitor cell chooses a lineage in the face of conflicting cues. Through transcript counting in megakaryocyte-erythroid progenitors undergoing erythropoiesis, we show that the expression levels of the pro-erythropoiesis transcription factor EKLF (also known as KLF1) and receptor EpoR are inversely correlated with their pro-megakaryopoiesis counterparts, FLI-1 and TpoR (also known as MPL). Notably, as progenitors commit to the erythrocyte lineage, EpoR is upregulated and TpoR is strongly downregulated, thus boosting the potency of the pro-erythropoiesis cue erythropoietin and effectively eliminating the activity of the pro-megakaryopoiesis cue thrombopoietin. Based on these findings, we propose a new model for exclusive decision making that explicitly incorporates signals from extrinsic cues, and we experimentally confirm a model prediction of temporal changes in transcript noise levels in committing progenitors. Our study suggests that lineage-specific receptor levels can modulate potencies of cues to achieve robust commitment decisions.