scispace - formally typeset
Search or ask a question

Showing papers by "C. M. Booth published in 2010"


Journal ArticleDOI
TL;DR: In this paper, the authors investigate the physics driving the cosmic star formation history using the more than 50 large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations project.
Abstract: We investigate the physics driving the cosmic star formation (SF) history using the more than 50 large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations project. We systematically vary the parameters of the model to determine which physical processes are dominant and which aspects of the model are robust. Generically, we find that SF is limited by the build-up of dark matter haloes at high redshift, reaches a broad maximum at intermediate redshift and then decreases as it is quenched by lower cooling rates in hotter and lower density gas, gas exhaustion and self-regulated feedback from stars and black holes. The higher redshift SF is therefore mostly determined by the cosmological parameters and to a lesser extent by photoheating from reionization. The location and height of the peak in the SF history, and the steepness of the decline towards the present, depend on the physics and implementation of stellar and black hole feedback. Mass loss from intermediate-mass stars and metal-line cooling both boost the SF rate at late times. Galaxies form stars in a self-regulated fashion at a rate controlled by the balance between, on the one hand, feedback from massive stars and black holes and, on the other hand, gas cooling and accretion. Paradoxically, the SF rate is highly insensitive to the assumed SF law. This can be understood in terms of self-regulation: if the SF efficiency is changed, then galaxies adjust their gas fractions so as to achieve the same rate of production of massive stars. Self-regulated feedback from accreting black holes is required to match the steep decline in the observed SF rate below redshift 2, although more extreme feedback from SF, for example in the form of a top-heavy initial stellar mass function at high gas pressures, can help.

778 citations


Journal ArticleDOI
TL;DR: In this article, the effects of supermassive black hole feedback on the star formation rate (SFRs) of galaxies was examined, and it was shown that BH feedback significantly reduced the gas mass fractions of galaxy groups with masses less than a few times 10 14 M�, yielding a gas mass fraction and X-ray luminosity scaling with system temperature that is in excellent agreement with the data, although the detailed scatter in the L T relation is not quite correct.
Abstract: The relatively recent insight that energy input from supermassive black holes (BHs) can have a substantial effect on the star formation rates (SFRs) of galaxies motivates us to examine the effects of BH feedback on the scale of galaxy groups. At present, groups contain most of the galaxies and a significant fraction of the overall baryon content of the universe and, along with massive clusters, they represent the only systems for which it is possible to measure both the stellar and gaseous baryonic components directly. To explore the effects of BH feedback on groups, we analyse two high resolution cosmological hydrodynamic simulations from the OverWhelmingly Large Simulations (OWLS) project. While both include galactic winds driven by supernovae, only one of the models includes feedback from accreting BHs. We compare the properties of the simulated galaxy groups to a wide range of observational data, including the entropy and temperature profiles of the intragroup medium, hot gas mass fractions, the luminosity temperature and mass temperature scaling relations, the K-band luminosity of the group and its central brightest galaxy (CBG), star formation rates and ages of the CBG, and gas- and stellar-phase metallicities. Both runs yield entropy distributions similar to the data, while the run without AGN feedback yields highly peaked temperature profiles, in discord with the observations. Energy input from supermassive BHs significantly reduces the gas mass fractions of galaxy groups with masses less than a few times 10 14 M� , yielding a gas mass fraction and X-ray luminosity scaling with system temperature that is in excellent agreement with the data, although the detailed scatter in the L T relation is not quite correct. The run without AGN feedback suffers from the well known overcooling problem — the resulting stellar mass fractions are several times larger than observed and present-day cooling flows operate uninhibitedly. By contrast, the run that includes BH feedback yields stellar mass fractions, SFRs, and stellar age distributions in excellent agreement with current estimates, thus resolving the long standing ‘cooling crisis’ of simulations on the scale of groups. Both runs yield very similar gas-phase metal abundance profiles that match X-ray measurements, but they predict very different stellar metallicities. Based on the above, galaxy groups provide a compelling case that feedback from supermassive BHs is a crucial ingredient in the formation of massive galaxies.

326 citations


Journal ArticleDOI
TL;DR: In this paper, a large suite of high-resolution cosmological hydrodynamical simulations was used to systematically investigate the back-reaction of baryons on the dark matter halo density profile.
Abstract: The back-reaction of baryons on the dark matter halo density profile is of great interest, not least because it is an important systematic uncertainty when attempting to detect the dark matter. Here, we draw on a large suite of high-resolution cosmological hydrodynamical simulations to systematically investigate this process and its dependence on the baryonic physics associated with galaxy formation. The effects of baryons on the dark matter distribution are typically not well described by adiabatic contraction models. In the inner 10 per cent of the virial radius the models are only successful if we allow their parameters to vary with baryonic physics, halo mass and redshift, thereby removing all predictive power. On larger scales the profiles from dark matter only simulations consistently provide better fits than adiabatic contraction models, even when we allow the parameters of the latter models to vary. The inclusion of baryons results in significantly more concentrated density profiles if radiative cooling is efficient and feedback is weak. The dark matter halo concentration can in that case increase by as much as 30 (10) per cent on galaxy (cluster) scales. The most significant effects occur in galaxies at high redshift, where there is a strong anticorrelation between the baryon fraction in the halo centre and the inner slope of both the total and the dark matter density profiles. If feedback is weak, isothermal inner profiles form, in agreement with observations of massive, early-type galaxies. However, we find that active galactic nuclei (AGN) feedback, or extremely efficient feedback from massive stars, is necessary to match observed stellar fractions in groups and clusters, as well as to keep the maximum circular velocity similar to the virial velocity as observed for disc galaxies. These strong feedback models reduce the baryon fraction in galaxies by a factor of 3 relative to the case with no feedback. The AGN is even capable of reducing the baryon fraction by a factor of 2 in the inner region of group and cluster haloes. This in turn results in inner density profiles which are typically shallower than isothermal and the halo concentrations tend to be lower than in the absence of baryons. We therefore conclude that the disagreement between the concentrations inferred from observations of groups of galaxies and predictions from simulations that was identified by Duffy et al. is not alleviated by the inclusion of baryons.

292 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of cooling and feedback from supernovae (SNe) and active galactic nuclei (AGN) on the gas of a large number of cosmological hydrodynamic simulations were compared.
Abstract: Galaxy groups are not scaled down versions of massive galaxy clusters - the hot gas in groups (known as the intragroup medium, IGrM for short) is, on average, less dense than the intracluster medium, implying that one or more non-gravitational processes (e.g., radiative cooling, star formation, and/or feedback) has had a relatively larger effect on groups. In the present study, we compare a number of cosmological hydrodynamic simulations that form part of the OverWhelmingly Large Simulations project to isolate and quantify the effects of cooling and feedback from supernovae (SNe) and active galactic nuclei (AGN) on the gas. This is achieved by comparing Lagrangian thermal histories of the gas in the different runs, which were all started from identical initial conditions. While radiative cooling, star formation, and SN feedback are all necessary ingredients, only runs that also include AGN feedback are able to successfully reproduce the optical and X-ray properties of groups and low-mass clusters. We isolate how, when, and exactly what gas is heated by AGN. Interestingly, we find that the gas that constitutes the present-day IGrM is that which was not strongly heated by AGN. Instead, the low median density/high median entropy of the gas in present-day groups is achieved by the ejection of lower entropy gas from low-mass progenitor galaxies at high redshift (primarily 2 < z < 4). This corresponds to the epoch when supermassive black holes accreted most of their mass, typically at a rate that is close to the Eddington limit (i.e., when the black holes are in a `quasar mode').

199 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the rate at which gas accretes onto galaxies and haloes and investigated whether the accreted gas was shocked to high temperatures before reaching a galaxy.
Abstract: (Abridged) We study the rate at which gas accretes onto galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simulations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion onto haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. The specific rate of gas accretion onto haloes is, like that for dark matter, only weakly dependent on halo mass. For halo masses Mhalo>>10^11 Msun it is relatively insensitive to feedback processes. In contrast, accretion rates onto galaxies are determined by radiative cooling and by outflows driven by supernovae and active galactic nuclei. Galactic winds increase the halo mass at which the central galaxies grow the fastest by about two orders of magnitude to Mhalo~10^12 Msun. Gas accretion is bimodal, with maximum past temperatures either of order the virial temperature or ~10^11 Msun. Galaxies, but not necessarily their gaseous haloes, are predominantly fed by gas that did not experience an accretion shock when it entered the host halo.

192 citations


Journal ArticleDOI
TL;DR: In this article, the properties of simulated high-redshift galaxies using cosmological N-body/gas-dynamical runs from the OverWhelmingly Large Simulations (OWLS) project were studied.
Abstract: We study the properties of simulated high-redshift galaxies using cosmological N-body/gasdynamical runs from the OverWhelmingly Large Simulations (OWLS) project. The runs contrast several feedback implementations of varying effectiveness: from no feedback, to supernova-driven winds to powerful active galactic nucleus (AGN)-driven outflows. These different feedback models result in large variations in the abundance and structural properties of bright galaxies at z = 2. In agreement with earlier work, models with inefficient or no feedback lead to the formation of massive compact galaxies collecting a large fraction (upwards of 50 per cent) of all available baryons in each halo. Increasing the efficiency of feedback reduces the baryonic mass and increases the size of simulated galaxies. A model that includes supernova-driven gas outflows aided by the energetic output of AGNs reduces galaxy masses by roughly a factor of similar to 10 compared with the no-feedback case. Other models give results that straddle these two extremes. Despite the large differences in galaxy formation efficiency, the net specific angular momentum of a galaxy is, on average, roughly half that of its surrounding halo, independent of halo mass (in the range probed) and of the feedback scheme. Feedback thus affects the baryonic mass of a galaxy much more severely than its spin. Feedback induces strong correlations between angular momentum content and galaxy mass that leave their imprint on galaxy scaling relations and morphologies. Encouragingly, we find that galaxy discs are common in moderate-feedback runs, making up typically similar to 50 per cent of all galaxies at the centres of haloes with virial mass exceeding similar to 1011 M-circle dot. The size, stellar masses and circular speeds of simulated galaxies formed in such runs have properties in between those of large star-forming discs and of compact early-type galaxies at z = 2. Once the detailed abundance and structural properties of these rare objects are well established, it may be possible to use them to gauge the overall efficacy of feedback in the formation of high-redshift galaxies.

152 citations


Journal ArticleDOI
TL;DR: In this article, the authors use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the supermassive BHs and the properties of their host galaxies.
Abstract: The energy and momentum deposited by the radiation from accretion flows on to the supermassive black holes (BHs) that reside at the centres of virtually all galaxies can halt or even reverse gas inflow, providing a natural mechanism for supermassive BHs to regulate their growth and to couple their properties to those of their host galaxies. However, it remains unclear whether this self-regulation occurs on the scale at which the BH is gravitationally dominant, on that of the stellar bulge, the galaxy or that of the entire dark matter halo. To answer this question, we use self-consistent simulations of the co-evolution of the BH and galaxy populations that reproduce the observed correlations between the masses of the BHs and the properties of their host galaxies. We first confirm unambiguously that the BHs regulate their growth: the amount of energy that the BHs inject into their surroundings remains unchanged when the fraction of the accreted rest mass energy that is injected is varied by four orders of magnitude. The BHs simply adjust their masses so as to inject the same amount of energy. We then use simulations with artificially reduced star formation rates to demonstrate explicitly that BH mass is not set by the stellar mass. Instead, we find that it is determined by the mass of the dark matter halo with a secondary dependence on the halo concentration, of the form that would be expected if the halo binding energy were the fundamental property that controls the mass of the BH. We predict that the BH mass, mBH, scales with halo mass as mBH∝mαhalo, with α≈ 1.55 ± 0.05, and that the scatter around the mean relation in part reflects the scatter in the halo concentration–mass relation.

121 citations


Journal ArticleDOI
TL;DR: In this article, a suite of cosmological, hydrodynamical simulations were used to investigate the chemical enrichment history of the universe. But the authors did not consider the age of the metals.
Abstract: We use a suite of cosmological, hydrodynamical simulations to investigate the chemical enrichment history of the Universe. Specifically, we trace the origin of the metals back in time to investigate when various gas phases were enriched and by what halo masses. We find that the age of the metals decreases strongly with the density of the gas in which they end up. At least half of the metals that reside in the diffuse intergalactic medium (IGM) at redshift zero (two) were ejected from galaxies above redshift two (three). The mass of the haloes that last contained the metals increases rapidly with the gas density. More than half of the mass in intergalactic metals was ejected by haloes with total masses less than 10 11 M⊙ and stellar masses less than 10 9 M⊙. The range of halo masses that contributes to the enrichment is wider for the hotter part of the IGM. By combining the ‘when’ and ‘by what’ aspects of the enrichment history, we show that metals residing in lower density gas were typically ejected earlier and by lower mass haloes.

61 citations


Journal ArticleDOI
TL;DR: This paper investigated the origin and physical properties of OVI absorbers at low redshift (z = 0.25) using a subset of cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project.
Abstract: We investigate the origin and physical properties of OVI absorbers at low redshift (z = 0.25) using a subset of cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project. Intervening OVI absorbers are believed to trace shock-heated gas in the Warm-Hot Intergalactic Medium (WHIM) and may thus play a key role in the search for the missing baryons in the present-day Universe. When compared to observations, the predicted distributions of the different OVI line parameters (column density, Doppler parameter, rest equivalent width) from our simulations exhibit a lack of strong OVI absorbers. This suggests that physical processes on sub-grid scales (e.g. turbulence) may strongly influence the observed properties of OVI systems. We find that the intervening OVI absorption arises mainly in highly metal-enriched (0.1 < 100. One third of the OVI absorbers in our simulation are found to trace gas at temperatures T < 10^5 K, while the rest arises in gas at higher temperatures around T =10^5.3 K. The OVI resides in a similar region of (rho,T)-space as much of the shock-heated baryonic matter, but the vast majority of this gas has a lower metal content and does not give rise to detectable OVI absorption As a consequence of the patchy metal distribution, OVI absorbers in our simulations trace only a very small fraction of the cosmic baryons (<2 percent) and the cosmic metals. Instead, these systems presumably trace previously shock-heated, metal-rich material from galactic winds that is now cooling. The common approach of comparing OVI and HI column densities to estimate the physical conditions in intervening absorbers from QSO observations may be misleading, as most of the HI (and most of the gas mass) is not physically connected with the high-metallicity patches that give rise to the OVI absorption.

57 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a subset of cosmological simulations from the Overwhelmingly Large Simulations (OWLS) project to test the dependence of the predicted emission on a range of physical prescriptions, such as cosmology, gas cooling and feedback from star formation and accreting black holes.
Abstract: Emission lines from metals offer one of the most promising ways to detect the elusive warm-hot intergalactic medium (WHIM; 10 5 < T < 10 7 K), which is thought to contain a substantial fraction of the baryons in the low-redshift Universe. We present predictions for the soft X-ray line emission from the WHIM using a subset of cosmological simulations from the Overwhelmingly Large Simulations (OWLS) project. We use the OWLS models to test the dependence of the predicted emission on a range of physical prescriptions, such as cosmology, gas cooling and feedback from star formation and accreting black holes. Provided that metal-line cooling is taken into account, the models give surprisingly similar results, indicating that the predictions are robust. Soft X-ray lines trace the hotter part of the WHIM (T ≳ 10 6 K). We find that the O VIII 18.97 A is the strongest emission line, with a predicted maximum surface brightness of ∼10 2 photon s -1 sr -1 , but a number of other lines are only slightly weaker. All lines show a strong correlation between the intensity of the observed flux and the density and metallicity of the gas responsible for the emission. On the other hand, the potentially detectable emission consistently corresponds to the temperature at which the emissivity of the electronic transition peaks. The emission traces neither the baryonic nor the metal mass. In particular, the emission that is potentially detectable with proposed missions traces overdense (ρ ≳ 10 2 ρ mean ) and metal-rich (Z ≳ 10 -1 Z ⊙ ) gas in and around galaxies and groups. While soft X-ray line emission is therefore not a promising route to close the baryon budget, it does offer the exciting possibility to image the gas accreting on to and flowing out of galaxies.

47 citations


Journal ArticleDOI
TL;DR: In this article, it was shown that emission lines are highly biased tracers of the missing baryons and are not an optimal tool to close the baryon budget, however, they do provide a powerful means to detect the gas cooling onto or flowing out of galaxies and groups.
Abstract: Approximately half the baryons in the local Universe are thought to reside in the warmhot intergalactic medium (WHIM), i.e. diffuse gas with temperatures in the range 10 5 K 10 2 �mean) and metal rich (Z & 0:1Z� ) gas. As such, emission lines are highly biased tracers of the missing baryons and are not an optimal tool to close the baryon budget. However, they do provide a powerful means to detect the gas cooling onto or flowing out of galaxies and groups.

Journal ArticleDOI
TL;DR: The back-reaction of baryons on the dark matter halo density profile is of great interest, not least because it is an important systematic uncertainty when attempting to detect the dark mass.
Abstract: The back-reaction of baryons on the dark matter halo density profile is of great interest, not least because it is an important systematic uncertainty when attempting to detect the dark matter. Here, we draw on a large suite of high resolution cosmological hydrodynamical simulations, to systematically investigate this process and its dependence on the baryonic physics associated with galaxy formation. The inclusion of baryons results in significantly more concentrated density profiles if radiative cooling is efficient and feedback is weak. The dark matter halo concentration can in that case increase by as much as 30 (10) per cent on galaxy (cluster) scales. The most significant effects occur in galaxies at high redshift, where there is a strong anti-correlation between the baryon fraction in the halo centre and the inner slope of both the total and the dark matter density profiles. If feedback is weak, isothermal inner profiles form, in agreement with observations of massive, early-type galaxies. However, we find that AGN feedback, or extremely efficient feedback from massive stars, is necessary to match observed stellar fractions in groups and clusters, as well as to keep the maximum circular velocity similar to the virial velocity as observed for disk galaxies. These strong feedback models reduce the baryon fraction in galaxies by a factor of 3 relative to the case with no feedback. The AGN is even capable of reducing the baryon fraction by a factor of 2 in the inner region of group and cluster haloes. This in turn results in inner density profiles which are typically shallower than isothermal and the halo concentrations tend to be lower than in the absence of baryons.

Journal ArticleDOI
TL;DR: In this article, it was shown that the IGs in more massive halos cannot possibly account for the observations as they are too rare for their outflows to cover a sufficiently large fraction of the volume.
Abstract: Observations of quasar absorption line systems reveal that the z=3 intergalactic medium (IGM) is polluted by heavy elements down to HI optical depths tau_HI 10^2 kpc. Galaxies in more massive haloes cannot possibly account for the observations as they are too rare for their outflows to cover a sufficiently large fraction of the volume. Galaxies need to enrich gas out to distances that are much greater than the virial radii of their host haloes. Assuming the metals to be well mixed on small scales, our modeling requires that the fractions of the simulated volume and baryonic mass that are polluted with metals are, respectively, >10% and >50% in order to match observations.

Journal ArticleDOI
TL;DR: In this article, a cosmological simulation and an analytical model were used to investigate how and why the scaling relations for BHs evolve with cosmic time, and they found that a simulation that reproduces the observed redshift zero relations between m_BH and the properties of its host galaxy, as well as the thermodynamic profiles of the intragroup medium, also reproduce the observed evolution in the ratio m_bH/m_s for massive galaxies, although the evolution of the m _BH/sigma relation is in apparent conflict with observations.
Abstract: The growth of the supermassive black holes (BHs) that reside at the centres of most galaxies is intertwined with the physical processes that drive the formation of the galaxies themselves. The evolution of the relations between the mass of the BH, m_BH, and the properties of its host therefore represent crucial aspects of the galaxy formation process. We use a cosmological simulation, as well as an analytical model, to investigate how and why the scaling relations for BHs evolve with cosmic time. We find that a simulation that reproduces the observed redshift zero relations between m_BH and the properties of its host galaxy, as well as the thermodynamic profiles of the intragroup medium, also reproduces the observed evolution in the ratio m_BH/m_s for massive galaxies, although the evolution of the m_BH/sigma relation is in apparent conflict with observations. The simulation predicts that the relations between m_BH and the binding energies of both the galaxy and its dark matter halo do not evolve, while the ratio m_BH/m_halo increases with redshift. The simple, analytic model of Booth & Schaye (2010), in which the mass of the BH is controlled by the gravitational binding energy of its host halo, quantitatively reproduces the latter two results. Finally, we can explain the evolution in the relations between m_BH and the mass and binding energy of the stellar component of its host galaxy for massive galaxies (m_s~10^11 M_sun) at low redshift (z<1) if these galaxies grow primarily through dry mergers.

Journal ArticleDOI
TL;DR: In this article, the surface brightness of a sample of UV lines that could potentially be observed by the next generation of UV telescopes at z 10^3 photon/s/cm^2/sr, comes from relatively dense (rho>10^2 rho_mean) and metal rich (Z>0.1 Z_sun) gas.
Abstract: Approximately half the baryons in the local Universe are thought to reside in the warm-hot intergalactic medium (WHIM). Emission lines from metals in the UV band are excellent tracers of the cooler fraction of this gas. We present predictions for the surface brightness of a sample of UV lines that could potentially be observed by the next generation of UV telescopes at z 10^3 photon/s/cm^2/sr), comes from relatively dense (rho>10^2 rho_mean) and metal rich (Z>0.1 Z_sun) gas. As such, emission lines are highly biased tracers of the missing baryons and are not an optimal tool to close the baryon budget. However, they do provide a powerful means to detect the gas cooling onto or flowing out of galaxies and groups. (Abridged)

Journal ArticleDOI
TL;DR: In this paper, the properties of simulated high-redshift galaxies using cosmological N-body/gas-dynamical runs from the OverWhelmingly Large Simulations (OWLS) project were studied.
Abstract: We study the properties of simulated high-redshift galaxies using cosmological N-body/gasdynamical runs from the OverWhelmingly Large Simulations (OWLS) project. The runs contrast several feedback implementations of varying effectiveness: from no-feedback, to supernova-driven winds to powerful AGN-driven outflows. These different feedback models result in large variations in the abundance and structural properties of bright galaxies at z=2. We find that feedback affects the baryonic mass of a galaxy much more severely than its spin, which is on average roughly half that of its surrounding dark matter halo in our runs. Feedback induces strong correlations between angular momentum content and galaxy mass that leave their imprint on galaxy scaling relations and morphologies. Encouragingly, we find that galaxy disks are common in moderate-feedback runs, making up typically ~50% of all galaxies at the centers of haloes with virial mass exceeding 1e11 M_sun. The size, stellar masses, and circular speeds of simulated galaxies formed in such runs have properties that straddle those of large star-forming disks and of compact early-type galaxies at z=2. Once the detailed abundance and structural properties of these rare objects are well established it may be possible to use them to gauge the overall efficacy of feedback in the formation of high redshift galaxies.

Journal ArticleDOI
TL;DR: In this paper, the authors use a suite of cosmological, hydrodynamical simulations to investigate the chemical enrichment history of the universe and trace the origin of the metals back in time to investigate when various gas phases were enriched.
Abstract: We use a suite of cosmological, hydrodynamical simulations to investigate the chemical enrichment history of the Universe. Specifically, we trace the origin of the metals back in time to investigate when various gas phases were enriched and by what halo masses. We find that the age of the metals decreases strongly with the density of the gas in which they end up. At least half of the metals that reside in the diffuse intergalactic medium (IGM) at redshift zero (two) were ejected from galaxies above redshift two (three). The mass of the haloes that last contained the metals increases rapidly with the gas density. More than half of the mass in intergalactic metals was ejected by haloes with total masses less than 1e11 solar masses and stellar masses less than 1e9 solar masses. The range of halo masses that contributes to the enrichment is wider for the hotter part of the IGM. By combining the `when' and `by what' aspects of the enrichment history, we show that metals residing in lower density gas were typically ejected earlier and by lower mass haloes.