scispace - formally typeset
Search or ask a question

Showing papers by "Changlian Zhu published in 2023"


Journal ArticleDOI
TL;DR: In this article , an eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated for the diagnosis of ASD in 105 children with ASD and 105 age and gender-matched typically developing (TD) children.
Abstract: Autism spectrum disorder (ASD) includes a range of multifactorial neurodevelopmental disabilities characterized by a variable set of neuropsychiatric symptoms. Immunological abnormalities have been considered to play important roles in the pathogenesis of ASD, but it is still unknown which abnormalities are more prominent.A total of 105 children with ASD and 105 age and gender-matched typically developing (TD) children were recruited. An eating and mealtime behavior questionnaire, dietary habits, and the Bristol Stool Scale were investigated. The immune cell profiles in peripheral blood were analyzed by flow cytometry, and cytokines (IFN-γ, IL-8, IL-10, IL-17A, and TNF-α) in plasma were examined by Luminex assay. The obtained results were further validated using an external validation cohort including 82 children with ASD and 51 TD children.Compared to TD children, children with ASD had significant eating and mealtime behavioral changes and gastrointestinal symptoms characterized by increased food fussiness and emotional eating, decreased fruit and vegetable consumption, and increased stool astriction. The proportion of γδT cells was significantly higher in children with ASD than TD children (β: 0.156; 95% CI: 0.888 ∼ 2.135, p < 0.001) even after adjusting for gender, eating and mealtime behaviors, and dietary habits. In addition, the increased γδT cells were evident in all age groups (age < 48 months: β: 0.288; 95% CI: 0.420 ∼ 4.899, p = 0.020; age ≥ 48 months: β: 0.458; 95% CI: 0.694 ∼ 9.352, p = 0.024), as well as in boys (β: 0.174; 95% CI: 0.834 ∼ 2.625, p < 0.001) but not in girls. These findings were also confirmed by an external validation cohort. Furthermore, IL-17, but not IFN-γ, secretion by the circulating γδT cells was increased in ASD children. Machine learning revealed that the area under the curve in nomogram plots for increased γδT cells combined with eating behavior/dietary factors was 0.905, which held true in both boys and girls and in all the age groups of ASD children. The decision curves showed that children can receive significantly higher diagnostic benefit within the threshold probability range from 0 to 1.0 in the nomogram model.Children with ASD present with divergent eating and mealtime behaviors and dietary habits as well as gastrointestinal symptoms. In peripheral blood, γδT cells but not αβT cells are associated with ASD. The increased γδT cells combined with eating and mealtime behavior/dietary factors have a high value for assisting in the diagnosis of ASD.

Journal ArticleDOI
TL;DR: In this article , the authors performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and Spearman correlation analysis, with a focus on expression profiling in hub genes and immune cells.
Abstract: The pathogenesis of autism spectrum disorder (ASD) is not well understood, especially in terms of immunity and inflammation, and there are currently no early diagnostic or treatment methods. In this study, we obtained six existing Gene Expression Omnibus transcriptome datasets from the blood of ASD patients. We performed functional enrichment analysis, PPI analysis, CIBERSORT algorithm, and Spearman correlation analysis, with a focus on expression profiling in hub genes and immune cells. We validated that monocytes and nonclassical monocytes were upregulated in the ASD group using peripheral blood (30 children with ASD and 30 age and sex-matched typically developing children) using flow cytometry. The receiver operating characteristic curves (PSMC4 and ALAS2) and analysis stratified by ASD severity (LIlRB1 and CD69) showed that they had predictive value using the “training” and verification groups. Three immune cell types – monocytes, M2 macrophages, and activated dendritic cells – had different degrees of correlation with 15 identified hub genes. In addition, we analyzed the miRNA-mRNA network and agents-gene interactions using miRNA databases (starBase and miRDB) and the DSigDB database. Two miRNAs (miR-342-3p and miR-1321) and 23 agents were linked with ASD. These findings suggest that dysregulation of the immune system may contribute to ASD development, especially dysregulation of monocytes and monocyte-derived cells. ASD-related hub genes may serve as potential predictors for ASD, and the potential ASD-related miRNAs and agents identified here may open up new strategies for the prevention and treatment of ASD.

Journal ArticleDOI
TL;DR: In this paper , the relationship between abnormal VitB12 levels and hematologic parameters was investigated as potential risk factors for methylmalonic acidemia (MMA) symptoms in children.

Journal ArticleDOI
TL;DR: In this article , Alpha1-antitrypsin (AAT) was used to treat preterm brain injury in neonatal mice, and the effect of AAT was more pronounced in male mice.
Abstract: Introduction: Preterm brain injury often leads to lifelong disabilities affecting both cognitive and motor functions, and effective therapies are limited. Alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteinases with anti-inflammatory, anti-apoptotic, and cytoprotective properties, might be beneficial in treating preterm brain injury. The aim of this study was to investigate whether AAT has neuroprotective effects in a mouse preterm brain injury model. Methods: Preterm brain injury was induced on postnatal day 5, and mouse pups’ right common carotid arteries were cut between two ligations followed by hypoxia induction. Brain injury was evaluated through immunohistochemistry staining and magnetic resonance imaging. Fluoro-Jade B and immunohistochemistry staining were performed to investigate the neuronal cell death and blood-brain barrier (BBB) permeability. The motor function and anxiety-like behaviors were revealed by CatWalk gait analysis and the open field test. Results: After hypoxia-ischemia (HI) insult, brain injury was alleviated by AAT treatment, and this was accompanied by reduced BBB permeability, reduced neuronal cell death and caspase-3 activation, and inhibition of microglia activation. In addition, AAT administration significantly improved HI-induced motor function deficiencies in mice. The neuroprotective effect of AAT was more pronounced in male mice. Conclusion: AAT treatment is neuroprotective against preterm brain injury in neonatal mice, and the effect is more pronounced in males.

Journal ArticleDOI
TL;DR: In this article , the secretome of dying NSPCs contains heat-stable proteins, which protect neurons against glutamate-induced toxicity and trophic factor withdrawal in vitro, and from ischemic brain damage in vivo.
Abstract: Summary Neural stem and progenitor cell (NSPC) transplants provide neuroprotection in models of acute brain injury, but the underlying mechanisms are not fully understood. Here, we provide evidence that caspase-dependent apoptotic cell death of NSPCs is required for sending survival signals to the injured brain. The secretome of dying NSPCs contains heat-stable proteins, which protect neurons against glutamate-induced toxicity and trophic factor withdrawal in vitro, and from ischemic brain damage in vivo. Our findings support a new concept suggesting a bystander effect of apoptotic NSPCs, which actively promote neuronal survival through the release of a protective “farewell” secretome. Similar protective effects by the secretome of apoptotic NSPC were also confirmed in human neural progenitor cells and neural stem cells but not in mouse embryonic fibroblasts (MEF) or human dopaminergic neurons, suggesting that the observed effects are cell type specific and exist for neural progenitor/stem cells across species.


Journal ArticleDOI
TL;DR: In this paper , the authors explored potential inflammatory biomarkers for early prediction of necrotizing enterocolitis (NEC) in premature infants, including IL-8, TRAIL, IL-24, MMP-10, CCL20, CXCL1, OPG, TSLP, MCP-4, TNFSF14 and LIF.
Abstract: Abstract Objective This study aimed to explore potential inflammatory biomarkers for early prediction of necrotizing enterocolitis (NEC) in premature infants. Methods Plasma samples were collected from premature infants with NEC ( n = 30), sepsis ( n = 29), and controls without infection ( n = 29). The 92 inflammatory-related proteins were assessed via high-throughput OLINK proteomics platform . Results There were 11 inflammatory proteins that significate differences ( p < 0.05) among NEC, sepsis and control preterm infants, which include IL-8, TRAIL, IL-24, MMP-10, CCL20, CXCL1, OPG, TSLP, MCP-4, TNFSF14 and LIF. A combination of these 11 proteins could serve as differential diagnosis between NEC and control infants (AUC = 0.972), or between NEC and sepsis infants (AUC = 0.881). Furthermore, the combination of IL-8, OPG, MCP-4, IL-24, LIF and CCL20 could distinguish Stage II and III of NEC (AUC = 0.977). Further analysis showed the combination of IL-8, IL-24 and CCL20 have the best prediction value for NEC and control (AUC = 0.947), NEC and sepsis (AUC = 0.838) and different severity of NEC (AUC = 0.842). Conclusion Inflammatory proteins were different expressed in premature infants with NEC compared with controls or sepsis. Combining these proteins provide a higher diagnostic potential for preterm NEC infants.