scispace - formally typeset
Search or ask a question

Showing papers by "Cheol-Su Kim published in 2013"


Journal ArticleDOI
TL;DR: Results suggests that H MG-CoA reductase inhibitors induce lymphoma cells apoptosis by increasing intracellular ROS generation and p38 activation and suppressing activation of Akt and Erk pathways, through inhibition of metabolic products of the HMG- coenzyme A reduct enzyme reaction including mevalonate, FPP and GGPP.
Abstract: Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are widely used cholesterol-lowering drugs. Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. The objective here was to elucidate the molecular mechanism by which statins induce lymphoma cells death. Statins (atorvastatin, fluvastatin and simvastatin) treatment enhanced the DNA fragmentation and the activation of proapoptotic members such as caspase-3, PARP and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells, which was accompanied by inhibition of cell survival. Both increase in levels of reactive oxygen species (ROS) and activation of p38 MAPK and decrease in mitochondrial membrane potential and activation of Akt and Erk pathways were observed in statin-treated lymphoma cells. Statin-induced cytotoxic effects, DNA fragmentation and changes of activation of caspase-3, Akt, Erk and p38 were blocked by antioxidant (N-acetylcysteine) and metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggests that HMG-CoA reductase inhibitors induce lymphoma cells apoptosis by increasing intracellular ROS generation and p38 activation and suppressing activation of Akt and Erk pathways, through inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

119 citations


Journal ArticleDOI
TL;DR: The bathing with HRW significantly reduced the levels of skin damage, as well as increased activity of glutathione peroxidase and the effect of HRW on cytokine network in the skin after UVB exposure revealed thatHRW significantly decreased the level of inflammatory cytokines such as IL-1β, IL-6, TNF-α and IFN-γ.
Abstract: Exposure to UVB radiation induced skin damage that results to increase risk of skin cancer. Despite the clinical importance of skin-induced damage, antioxidants imposed limited therapeutic success. Hydrogen molecule (H2) has been known as a safe antioxidant in the prevention and therapeutic approach towards several diseases. Drinking hydrogen reduced water (HRW), inhalation of hydrogen gas, and injecting H2-dissolved saline are widely accepted to incorporate H2 in the body. However, there is no document about the beneficial effect of hydrogen water bath. Here, we investigated the effect of hydrogen bathing on the UVB-induced skin damage in hairless mice. For this, mice of the bathing group are allowed to freely swim on HRW, and let the HRW penetrate for 60 mins. Scoring of skin injury, reactive oxygen species (ROS) enzyme activity quantification, cytokine analysis, and ultrastructural change of corneocytes were measured after exposure to UVB radiation of 360–540 mJ/cm2. In summary, the bathing with HRW significantly reduced the levels of skin damage, as well as increased activity of glutathione peroxidase. Further, the effect of HRW on cytokine network in the skin after UVB exposure revealed that HRW significantly decreased the level of inflammatory cytokines such as IL-1β, IL-6, TNF-α and IFN-γ. Finally, scanning electron microscopy data revealed low number of defected corneocytes and ultrastructural changes, suggesting that HRW bathing would protect UV-induced cell damage.

21 citations


Journal ArticleDOI
TL;DR: It is found that KSK-CpG induces apoptotic cell death in A20 lymphoma cells at least in part by inducing G1-phase arrest and autocrine IFN-γ via increasing TLR9 expression, without the need for immune system of tumor-bearing host.

20 citations


Journal ArticleDOI
TL;DR: It is found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice, suggesting the safer fluid remedy for obesity control.
Abstract: Whether or not alkaline reduced water (ARW) has a positive effect on obesity is unclear. This study aims to prove the positive effect of ARW in high-fat (HF) diet-induced obesity (DIO) in C57BL/6 mice model. Toward this, obesity was induced by feeding the C57BL/6 male mice with high-fat diet (w/w 45% fat) for 12 weeks. Thereafter, the animals were administered with either ARW or tap water. Next, the degree of adiposity and DIO-associated parameters were assessed: clinico-pathological parameters, biochemical measurements, histopathological analysis of liver, the expression of cholesterol metabolism-related genes in the liver, and serum levels of adipokine and cytokine. We found that ARW-fed mice significantly ameliorated adiposity: controlled body weight gain, reduced the accumulation of epididymal fats and decreased liver fats as compared to control mice. Accordingly, ARW coordinated the level of adiponectin and leptin. Further, mRNA expression of cytochrome P450 (CYP)7A1 was upregulated. In summary, our data shows that ARW intake inhibits the progression of HF-DIO in mice. This is the first note on anti-obesity effect of ARW, clinically implying the safer fluid remedy for obesity control.

16 citations


Journal ArticleDOI
TL;DR: The results suggest that HW affects allergic contact dermatitis through modulation of Th1 and Th2 responses in NC/Nga mice, clinically implying a promising potential remedy for treatment of AD.
Abstract: Hydrogen water (HW) produced by electrolysis of water has characteristics of extremely low oxidation-reduction potential (ORP) value and high dissolved hydrogen (DH). It has been proved to have various beneficial effects including antioxidant and anti-inflammatory effects; however, HW effect on atopic dermatitis (AD), an inflammatory skin disorder, is poorly documented. In the present study, we examined the immunological effect of drinking HW on Dermatophagoides farinae-induced AD-like skin in NC/Nga mice. Mice were administered with HW and purified water (PW) for 25 days. We evaluated the serum concentration of pro-inflammatory (TNF-α), Th1 (IFN-γ, IL-2, and IL-12p70), Th2 (IL-4, IL-5, and IL-10), and cytokine expressed by both subsets (GM-CSF) to assess their possible relationship to the severity of AD. The serum levels of cytokines such as IL-10, TNF-α, IL-12p70, and GM-CSF of mice administered with HW was significantly reduced as compared to PW group. The results suggest that HW affects allergic contact dermatitis through modulation of Th1 and Th2 responses in NC/Nga mice. This is the first note on the drinking effect of HW on AD, clinically implying a promising potential remedy for treatment of AD.

13 citations


Journal ArticleDOI
TL;DR: It is suggested that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.
Abstract: Convincing evidence indicates that statins stimulate apoptotic cell death in several types of proliferating tumor cells in a cholesterol-lowering-independent manner. However, the relationship between apoptosis and autophagy in lymphoma cells exposed to statins remains unclear. The objective of this study was to elucidate the potential involvement of autophagy in fluvastatin-induced cell death of lymphoma cells. We found that fluvastatin treatment enhanced the activation of pro-apoptotic members such as caspase-3 and Bax, but suppressed the activation of anti-apoptotic molecule Bcl-2 in lymphoma cells including A20 and EL4 cells. The process was accompanied by increases in numbers of annexin V alone or annexin V/PI double positive cells. Furthermore, both autophagosomes and increases in levels of LC3-II were also observed in fluvastatin-treated lymphoma cells. However, apoptosis in fluvastatin-treated lymphoma cells could be blocked by the addition of 3-methyladenine (3-MA), the specific inhibitor of autophagy. Fluvastatin-induced activation of caspase-3, DNA fragmentation, and activation of LC3-II were blocked by metabolic products of the HMG-CoA reductase reaction, such as mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). These results suggest that autophagy contributes to fluvastatin-induced apoptosis in lymphoma cells, and that these regulating processes require inhibition of metabolic products of the HMG-CoA reductase reaction including mevalonate, FPP and GGPP.

12 citations