scispace - formally typeset
Search or ask a question

Showing papers by "Chuanshu Huang published in 2016"


Journal ArticleDOI
TL;DR: It is demonstrated that ISO treatment induces autophagy and inhibits bladder cancer growth through MAPK8-JUN-dependent transcriptional induction of SESN2, which provides a novel mechanistic insight into understanding the inhibitory effect of ISO on bladder cancers.
Abstract: Isorhapontigenin (ISO) is a new derivative of stilbene isolated from the Chinese herb Gnetum cleistostachyum. Our recent studies have revealed that ISO treatment at doses ranging from 20 to 80 μM triggers apoptosis in multiple human cancer cell lines. In the present study, we evaluated the potential effect of ISO on autophagy induction. We found that ISO treatment at sublethal doses induced autophagy effectively in human bladder cancer cells, which contributed to the inhibition of anchorage-independent growth of cancer cells. In addition, our studies revealed that ISO-mediated autophagy induction occurred in a SESN2 (sestrin 2)-dependent and BECN1 (Beclin 1, autophagy related)-independent manner. Furthermore, we identified that ISO treatment induced SESN2 expression via a MAPK8/JNK1 (mitogen-activated protein kinase 8)/JUN-dependent mechanism, in which ISO triggered MAPK8-dependent JUN activation and facilitated the binding of JUN to a consensus AP-1 binding site in the SESN2 promoter region, ther...

77 citations


Journal ArticleDOI
TL;DR: A novel SQSTM1 regulatory network is demonstrated that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Abstract: Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.

58 citations


Journal ArticleDOI
TL;DR: This study discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo and identified a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1–FOXO1–MMP-2 axis.
Abstract: Although our most recent studies have identified Isorhapontigenin (ISO), a novel derivative of stilbene that isolated from a Chinese herb Gnetum cleistostachyum, for its inhibition of human bladder cancer growth, nothing is known whether ISO possesses an inhibitory effect on bladder cancer invasion. Thus, we addressed this important question in current study and discovered that ISO treatment could inhibit mouse-invasive bladder cancer development following bladder carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) exposure in vivo We also found that ISO suppressed human bladder cancer cell invasion accompanied by upregulation of the forkhead box class O 1 (FOXO1) mRNA transcription in vitro Accordingly, FOXO1 was profoundly downregulated in human bladder cancer tissues and was negatively correlated with bladder cancer invasion. Forced expression of FOXO1 specifically suppressed high-grade human bladder cancer cell invasion, whereas knockdown of FOXO1 promoted noninvasive bladder cancer cells becoming invasive bladder cancer cells. Moreover, knockout of FOXO1 significantly increased bladder cancer cell invasion and abolished the ISO inhibition of invasion in human bladder cancer cells. Further studies showed that the inhibition of Signal transducer and activator of transcription 1 (STAT1) phosphorylation at Tyr701 was crucial for ISO upregulation of FOXO1 transcription. Furthermore, this study revealed that metalloproteinase-2 (MMP-2) was a FOXO1 downstream effector, which was also supported by data obtained from mouse model of ISO inhibition BBN-induced mouse-invasive bladder cancer formation. These findings not only provide a novel insight into the understanding of mechanism of bladder cancer's propensity to invasion, but also identify a new role and mechanisms underlying the natural compound ISO that specifically suppresses such bladder cancer invasion through targeting the STAT1-FOXO1-MMP-2 axis. Cancer Prev Res; 9(7); 567-80. ©2016 AACR.

52 citations


Journal ArticleDOI
TL;DR: The studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3′-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0–G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo.
Abstract: Our recent studies found that isorhapontigenin (ISO) showed a significant inhibitory effect on human bladder cancer cell growth, accompanied with cell-cycle G0-G1 arrest as well as downregulation of Cyclin D1 expression at transcriptional level via inhibition of Sp1 transactivation in bladder cancer cells. In the current study, the potential ISO inhibition of bladder tumor formation has been explored in a xenograft nude mouse model, and the molecular mechanisms underlying ISO inhibition of Sp1 expression and anticancer activities have been elucidated both in vitro and in vivo. Moreover, the studies demonstrated that ISO treatment induced the expression of miR-137, which in turn suppressed Sp1 protein translation by directly targeting Sp1 mRNA 3'-untranslated region (UTR). Similar to ISO treatment, ectopic expression of miR-137 alone led to G0-G1 cell growth arrest and inhibition of anchorage-independent growth in human bladder cancer cells, which could be completely reversed by overexpression of GFP-Sp1. The inhibition of miR-137 expression attenuated ISO-induced inhibition of Sp1/Cyclin D1 expression, induction of G0-G1 cell growth arrest, and suppression of cell anchorage-independent growth. Taken together, our studies have demonstrated that miR-137 induction by ISO targets Sp1 mRNA 3'-UTR and inhibits Sp1 protein translation, which consequently results in reduction of Cyclin D1 expression, induction of G0-G1 growth arrest, and inhibition of anchorage-independent growth in vitro and in vivo. Our results have provided novel insights into understanding the anticancer activity of ISO in the therapy of human bladder cancer.

33 citations


Journal ArticleDOI
TL;DR: The elucidation of the miR-145/SOX2/cyclin D1 axis in PDGS provides a significant insight into understanding the anti-GBM effect of ISO compound.
Abstract: Background Glioblastoma (GBM) is the most common malignant brain tumor, and glioma stem cells (GSCs) are considered a major source of treatment resistance for glioblastoma. Identifying new compounds that inhibit the growth of GSCs and understanding their underlying molecular mechanisms are therefore important for developing novel therapy for GBM. Methods We investigated the potential inhibitory effect of isorhapontigenin (ISO), an anticancer compound identified in our recent investigations, on anchorage-independent growth of patient-derived glioblastoma spheres (PDGS) and its mechanism of action. Results ISO treatment resulted in significant anchorage-independent growth inhibition, accompanied with cell cycle G0-G1 arrest and cyclin D1 protein downregulation in PDGS. Further studies established that cyclin D1 was downregulated by ISO at transcription levels in a SOX2-dependent manner. In addition, ISO attenuated SOX2 expression by specific induction of miR-145, which in turn suppressed 3'UTR activity of SOX2 mRNA without affecting its mRNA stability. Moreover, ectopic expression of exogenous SOX2 rendered D456 cells resistant to induction of cell cycle G0-G1 arrest and anchorage-independent growth inhibition upon ISO treatment, whereas inhibition of miR-145 resulted in D456 cells resistant to ISO inhibition of SOX2 and cyclin D1 expression. In addition, overexpression of miR-145 mimicked ISO treatment in D456 cells. Conclusions ISO induces miR-145 expression, which binds to the SOX2 mRNA 3'UTR region and inhibits SOX2 protein translation. Inhibition of SOX2 leads to cyclin D1 downregulation and PDGS anchorage-independent growth inhibition. The elucidation of the miR-145/SOX2/cyclin D1 axis in PDGS provides a significant insight into understanding the anti-GBM effect of ISO compound.

30 citations


Journal ArticleDOI
TL;DR: The results reveal a previously unknown function of the RING of XIAP in promoting miR-4295 transcription, thereby reducing p63α translation and enhancing urothelial transformation and the potential for targeting this frequently overexpressed protein as a therapeutic alternative.
Abstract: The X-linked inhibitor of apoptosis protein (XIAP) contains three N-terminal BIR domains that mediate anti-apoptosis and one C-terminal RING finger domain whose function(s) are not fully defined. Here we show that the RING domain of XIAP strongly inhibits the expression of p63α, a known tumor suppressor. XIAP knockdown in urothelial cells or RING deletion in knockin mice markedly upregulates p63α expression. This RING-mediated p63α downregulation is critical for the malignant transformation of normal urothelial cells following EGF treatment. We further show that the RING domain promotes Sp1-mediated transcription of miR-4295 which targets the 3'UTR of p63α mRNA and consequently inhibits p63α translation. Our results reveal a previously unknown function of the RING of XIAP in promoting miR-4295 transcription, thereby reducing p63α translation and enhancing urothelial transformation. Our data offer novel insights into the multifunctional effects of the XIAP RING domain on urothelial tumorigenesis and the potential for targeting this frequently overexpressed protein as a therapeutic alternative.

28 citations


Journal ArticleDOI
04 Aug 2016-Oncogene
TL;DR: It is reported that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100’s inhibitory role in NFκB activation.
Abstract: Emerging evidence from The Cancer Genome Atlas has revealed that nuclear factor κB2 (nfκb2) gene encoding p100 is genetically deleted or mutated in human cancers, implicating NFκB2 as a potential tumor suppressor. However, the molecular mechanism underlying the antitumorigenic action of p100 remains poorly understood. Here we report that p100 inhibits cancer cell anchorage-independent growth, a hallmark of cellular malignancy, by stabilizing the tumor-suppressor phosphatase and tensin homolog (PTEN) mRNA via a mechanism that is independent of p100's inhibitory role in NFκB activation. We further demonstrate that the regulatory effect of p100 on PTEN expression is mediated by its downregulation of miR-494 as a result of the inactivation of extracellular signal-regulated kinase 2 (ERK2), in turn leading to inhibition of c-Jun/activator protein-1-dependent transcriptional activity. Furthermore, we identify that p100 specifically interacts with non-phosphorylated ERK2 and prevents ERK2 phosphorylation and nuclear translocation. Moreover, the death domain at C-terminal of p100 is identified as being crucial and sufficient for its interaction with ERK2. Taken together, our findings provide novel mechanistic insights into the understanding of the tumor-suppressive role for NFκB2 p100.

27 citations


Journal ArticleDOI
TL;DR: A novel function of p85α is demonstrated as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p 85α protein in mammalian cells and further supporting that p85 α might be a potential target for cancer prevention and therapy.
Abstract: p85α is a regulatory subunit of phosphatidylinositol 3-kinase (PI3K) that is a key lipid enzyme for generating phosphatidylinositol 3, 4, 5-trisphosphate, and subsequently activates signaling that ultimately regulates cell cycle progression, cell growth, cytoskeletal changes, and cell migration. In addition to form a complex with the p110 catalytic subunit, p85α also exists as a monomeric form due to that there is a greater abundance of p85α than p110 in many cell types. Our previous studies have demonstrated that monomeric p85α exerts a pro-apoptotic role in UV response through induction of TNF-α gene expression in PI3K-independent manner. In current studies, we identified a novel biological function of p85α as a positive regulator of epidermal growth factor receptor (EGFR) expression and cell malignant transformation via nucleolin-dependent mechanism. Our results showed that p85α was crucial for EGFR and nucleolin expression and subsequently resulted in an increase of malignant cellular transformation by using both specific knockdown and deletion of p85α in its normal expressed cells. Mechanistic studies revealed that p85α upregulated EGFR protein expression mainly through stabilizing its mRNA, whereas nucleolin (NCL) was able to bind to egfr mRNA and increase its mRNA stability. Consistently, overexpression of NCL in p85α-/- cells restored EGFR mRNA stabilization, protein expression and cell malignant transformation. Moreover, we discovered that p85α upregulated NCL gene transcription via enhancing C-Jun activation. Collectively, our studies demonstrate a novel function of p85α as a positive regulator of EGFR mRNA stability and cell malignant transformation, providing a significant insight into the understanding of biomedical nature of p85α protein in mammalian cells and further supporting that p85α might be a potential target for cancer prevention and therapy.

20 citations


Journal ArticleDOI
TL;DR: P100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients, and a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100 was identified.
Abstract: // Jiawei Xu 1, 3 , Yulei Wang 1 , Xiaohui Hua 1 , Jiheng Xu 1 , Zhongxian Tian 1 , Honglei Jin 1 , Jingxia Li 1 , Xue-Ru Wu 2 , Chuanshu Huang 1 1 Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA 2 Department of Urology, New York University School of Medicine, and Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, New York, NY 10010, USA 3 Current address: Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China Correspondence to: Chuanshu Huang, email: chuanshu.huang@nyumc.org Keywords: NFκB2 (p100), cyclin D1, PHLPP2, CREB, miR-302d Received: March 01, 2016 Accepted: March 31, 2016 Published: April 15, 2016 ABSTRACT Although the precursor protein of NFκB2 (p100) is thought to act as a tumor suppressor in mammalian cells, the molecular mechanism of its anti-tumor activity is far from clear. Here, we are, for the first time, to report that p100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients. Knockdown of p100 in cultured human bladder cancer cells promoted anchorage-independent growth accompanied with elevating abundance of cell-cycle-related proteins and accelerated cell-cycle progression. Above effects could be completely reversed by ectopically expression of p100, but not p52. Mechanistically, p100 inhibited Cyclin D1 protein translation by activating the transcription of LARP7 and its hosted miR-302d, which could directly bind to 3′-UTR of cyclin d1 mRNA and inhibited its protein translation. Furthermore, p100 suppressed the expression of PHLPP2 (PH domain and leucine-rich repeat protein phosphatases 2), thus promoting CREB phosphorylation at Ser133 and subsequently leading to miR-302d transcription. Taken together, our studies not only for the first time establish p100 as a key tumor suppressor of bladder cancer growth, but also identify a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100.

17 citations


Journal ArticleDOI
TL;DR: This study provides new experimental evidence indicating that the FGFR3 mutations have very limited urothelial tumorigenicity and that these mutations must collaborate with other genetic events to drive urothelia tumorigenesis.
Abstract: Missense mutations of fibroblast growth factor receptor 3 (FGFR3) occur in up to 80% of low-grade papillary urothelial carcinoma of the bladder (LGP-UCB) suggesting that these mutations are tumor drivers, although direct experimental evidence is lacking. Here we show that forced expression of FGFR3b-S249C, the most prevalent FGFR3 mutation in human LGP-UCB, in cultured urothelial cells resulted in slightly reduced surface translocation than wild-type FGFR3b, but nearly twice as much proliferation. When we expressed a mouse equivalent of this mutant (FGFR3b-S243C) in urothelia of adult transgenic mice in a tissue-specific and inducible manner, we observed significant activation of AKT and MAPK pathways. This was, however, not accompanied by urothelial proliferation or tumorigenesis over 12 months, due to compensatory tumor barriers in p16-pRB and p19-p53-p21 axes. Indeed, expressing FGFR3b-S249C in cultured human urothelial cells expressing SV40T, which functionally inactivates pRB/p53, markedly accelerated proliferation and cell-cycle progression. Furthermore, expressing FGFR3b-S243C in transgenic mouse urothelium expressing SV40T converted carcinoma-in-situ to high-grade papillary urothelial carcinoma. Together, our study provides new experimental evidence indicating that the FGFR3 mutations have very limited urothelial tumorigenicity and that these mutations must collaborate with other genetic events to drive urothelial tumorigenesis.

12 citations


Journal ArticleDOI
TL;DR: It is discovered that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells.
Abstract: // Ruowen Zhang 1, * , Xun Che 1, * , Jingjie Zhang 1, * , Yang Li 1, 3 , Jingxia Li 1 , Xu Deng 2 , Junlan Zhu 1, 3 , Honglei Jin 3 , Qinshi Zhao 2 , Chuanshu Huang 1 1 Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA 2 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China 3 Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China * These authors contributed equally to this work Correspondence to: Chuanshu Huang, email: chuanshu.huang@nyumc.org Qinshi Zhao, email: qinshizhao@mail.kib.ac.cn Keywords: Chel A, human bladder cancer, apoptosis, PHLPP2, c-Jun Received: March 13, 2016 Accepted: August 09, 2016 Published: August 20, 2016 ABSTRACT Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis , is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.