scispace - formally typeset
C

Chunsheng Wang

Researcher at University of Maryland, College Park

Publications -  432
Citations -  55746

Chunsheng Wang is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Electrolyte & Anode. The author has an hindex of 104, co-authored 368 publications receiving 36853 citations. Previous affiliations of Chunsheng Wang include Texas A&M University System & Bar-Ilan University.

Papers
More filters
Journal ArticleDOI

Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells

TL;DR: In this paper, a review of methodologies adopted for reducing the capacity fade observed in silicon-based anodes, discuss the challenges that remain in using silicon and siliconbased anode, and propose possible approaches for overcoming them.
Journal ArticleDOI

"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.

TL;DR: A highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts with the formation of an electrode-electrolyte interphase, which could potentially be replaced with a safer aQueous alternative to lithium-ion batteries.
Journal ArticleDOI

Highly reversible zinc metal anode for aqueous batteries.

TL;DR: This work demonstrates that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address irreversibility issues and brings unprecedented flexibility and reversibility to Zn batteries.
Journal ArticleDOI

Expanded graphite as superior anode for sodium-ion batteries

TL;DR: Expanded graphite is reported as a Na-ion battery anode, prepared through a process of oxidation and partial reduction on graphite, which has an enlarged interlayer lattice distance yet retains an analogous long-range-ordered layered structure to graphite.
Journal ArticleDOI

Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion

TL;DR: Electrochemical and structural analysis identify that the MnO2 cathode experience a consequent H+ and Zn2+ insertion/extraction process with high reversibility and cycling stability, which is the first report on rechargeable aqueous batteries with a consequents ion-insertion reaction mechanism.