scispace - formally typeset
Search or ask a question

Showing papers by "Cindy Luongo published in 2022"


Journal ArticleDOI
01 Nov 2022-Cell
TL;DR: In this article , a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) was evaluated in rhesus macaques.

8 citations


Journal ArticleDOI
TL;DR: Both vaccines had excellent infectivity and were well-tolerated and primed for strong anamnestic RSV-antibody responses.
Abstract: BACKGROUND This United States-based study compared two candidate vaccines: RSV/ΔNS2/Δ1313/I1314L, attenuated by NS2 gene-deletion and temperature-sensitivity mutation in the polymerase gene; and RSV/276, attenuated by M2-2 deletion. METHODS RSV-seronegative children aged 6-24 months received RSV/ΔNS2/Δ1313/I1314L [106 plaque-forming units (PFU)], RSV/276 [105 PFU] or placebo intranasally. Participants were monitored for vaccine shedding, reactogenicity, and RSV serum antibodies, and followed over the subsequent RSV-season. RESULTS Enrollment occurred September 2017-October 2019. During 28 days post-inoculation, upper respiratory illness (URI) and/or fever occurred in 64% of RSV/ΔNS2/Δ1313/I1314L, 84% RSV/276, and 58% placebo recipients. Symptoms were generally mild. Cough was more common in RSV/276 recipients than RSV/ΔNS2/Δ1313/I1314L (48% v. 12%; p = 0.012) or placebo recipients (17%; p = 0.084). There were no lower respiratory illness or serious adverse events. Eighty-eight and 96% of RSV/ΔNS2/Δ1313/I1314L and RSV/276 recipients were infected with vaccine (shed vaccine and/or had ≥4-fold rises in RSV antibodies). Serum RSV-neutralizing titers and anti-RSV F IgG titers increased ≥4-fold in 60% and 92% of RSV/ΔNS2/Δ1313/I1314L and RSV/276 vaccinees, respectively. Exposure to community RSV during the subsequent winter was associated with strong anamnestic RSV-antibody responses. CONCLUSIONS Both vaccines had excellent infectivity and were well-tolerated. RSV/276 induced an excess of mild cough. Both vaccines were immunogenic and primed for strong anamnestic responses.

4 citations


Journal ArticleDOI
TL;DR: In this article , the authors used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein.
Abstract: Abstract Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the authors used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein.
Abstract: Abstract Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.

3 citations


Posted ContentDOI
13 Dec 2022-bioRxiv
TL;DR: In this article , the SARS-CoV-2 spike protein (S-2P) was used as an intranasal vaccine to protect infants against both HPIV3 and CoV2.
Abstract: The pediatric live-attenuated bovine/human parainfluenza virus type 3 (B/HPIV3)-vectored vaccine expressing the prefusion-stabilized SARS-CoV-2 spike (S) protein (B/HPIV3/S-2P) was previously evaluated in vitro and in hamsters. To improve its immunogenicity, we generated B/HPIV3/S-6P, expressing S further stabilized with 6 proline mutations (S-6P). Intranasal immunization of hamsters with B/HPIV3/S-6P reproducibly elicited significantly higher serum anti-S IgA/IgG titers than B/HPIV3/S-2P; hamster sera efficiently neutralized variants of concern (VoCs), including Omicron variants. B/HPIV3/S-2P and B/HPIV3/S-6P immunization protected hamsters against weight loss and lung inflammation following SARS-CoV-2 challenge with the vaccine-matched strain WA1/2020 or VoCs B.1.1.7/Alpha or B.1.351/Beta and induced near-sterilizing immunity. Three weeks post-challenge, B/HPIV3/S-2P- and B/HPIV3/S-6P-immunized hamsters exhibited a robust anamnestic serum antibody response with increased neutralizing potency to VoCs, including Omicron sublineages. B/HPIV3/S-6P primed for stronger anamnestic antibody responses after challenge with WA1/2020 than B/HPIV3/S-2P. B/HPIV3/S-6P will be evaluated as an intranasal vaccine to protect infants against both HPIV3 and SARS-CoV-2. AUTHOR SUMMARY SARS-CoV-2 infects and causes disease in all age groups. While injectable SARS-CoV-2 vaccines are effective against severe COVID-19, they do not fully prevent SARS-CoV-2 replication and transmission. This study describes the preclinical comparison in hamsters of B/HPIV3/S-2P and B/HPIV3/S-6P, live-attenuated pediatric vector vaccine candidates expressing the “2P” prefusion stabilized version of the SARS-CoV-2 spike protein, or the further-stabilized “6P” version. B/HPIV3/S-6P induced significantly stronger anti-S serum IgA and IgG responses than B/HPIV3/S-2P. A single intranasal immunization with B/HPIV3/S-6P elicited broad systemic antibody responses in hamsters that efficiently neutralized the vaccine-matched isolate as well as variants of concern, including Omicron. B/HPIV3/S-6P immunization induced near-complete airway protection against the vaccine-matched SARS-CoV-2 isolate as well as two variants. Furthermore, following SARS-CoV-2 challenge, immunized hamsters exhibited strong anamnestic serum antibody responses. Based on these data, B/HPIV3/S-6P will be further evaluated in a phase I study.

2 citations


Posted ContentDOI
23 May 2022-bioRxiv
TL;DR: A live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques.
Abstract: Pediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses. High levels of S-specific antibodies were also induced in serum, which efficiently neutralized SARS-CoV-2 variants of concern. Furthermore, B/HPIV3/S-6P induced robust systemic and pulmonary S-specific CD4+ and CD8+ T-cell responses, including tissue-resident memory cells in lungs. Following challenge, SARS-CoV-2 replication was undetectable in airways and lung tissues of immunized macaques. B/HPIV3/S-6P will be evaluated clinically as pediatric intranasal SARS-CoV-2/parainfluenza virus type 3 vaccine. One-Sentence Summary Intranasal parainfluenza virus-vectored COVID-19 vaccine induces anti-S antibodies, T-cell memory and protection in macaques.

2 citations