scispace - formally typeset
Search or ask a question

Showing papers by "Daniela Parolaro published in 2009"


Journal ArticleDOI
TL;DR: The data suggest that THC pretreated rats may establish less synaptic contacts and/or less efficient synaptic connections throughout the hippocampus and this could represent the molecular underpinning of the cognitive deficit induced by adolescent THC treatment.
Abstract: Marijuana and hashish are the illicit drugs most frequently used by human adolescents. Given the continued neurodevelopment throughout adolescence, adolescents may be more vulnerable than adults to certain neural consequences of heavy marijuana use. This study aimed to assess whether an experimental model of adolescent chronic exposure to Delta9-tetrahydrocannabinol (THC), may induce lasting effects on learning and memory. Adolescent rats have been treated with THC or its vehicle from 35 to 45 postnatal days (PND) and left undisturbed until their adulthood (75 PND) when aversive and spatial memory was assessed using the passive avoidance and radial maze tasks. No alteration was found in aversive memory, but in the radial maze THC pretreated animals exhibited a worse performance than vehicles, suggesting a deficit in spatial working memory. To correlate memory impairment to altered neuroplasticity, level of marker proteins was investigated in the hippocampus, the most relevant area mediating spatial memory. A significant decrease in the astroglial marker glial fibrillar acid protein was found as well as in pre- and postsynaptic protein expression (VAMP2, PSD95) and NMDA receptor levels in pretreated rats. To parallel these changes to alteration in dendritic morphology, Golgi-Cox staining was performed in the hippocampal dentate gyrus. Pretreated rats had a significantly lower total dendritic length and number than vehicles, as well as reduced spine density. Our data suggest that THC pretreated rats may establish less synaptic contacts and/or less efficient synaptic connections throughout the hippocampus and this could represent the molecular underpinning of the cognitive deficit induced by adolescent THC treatment.

261 citations


Journal ArticleDOI
TL;DR: To correlate memory impairment to altered neuroplasticity, level of marker proteins was investigated in the hippocampus and prefrontal cortex, the most relevant areas for learning and memory and revealed the presence of cognitive impairment in THC-induced depressive phenotype.
Abstract: We recently demonstrated that Delta(9)-tetrahydrocannabinol (THC) chronic administration in female adolescent rats induces alterations in the emotional circuit ending in depressive-like behavior in adulthood. Since cognitive dysfunction is a major component of depression, we assessed in these animals at adulthood different forms of memory. Adolescent female rats were treated with THC or its vehicle from 35 to 45 post-natal days (PND) and left undisturbed until their adulthood (75 PND) when aversive and spatial memory was assessed using the passive avoidance and radial maze tasks. No alteration was found in aversive memory, but in the radial maze THC pre-treated animals exhibited a worse performance than vehicles, suggesting a deficit in spatial working memory. To correlate memory impairment to altered neuroplasticity, level of marker proteins was investigated in the hippocampus and prefrontal cortex, the most relevant areas for learning and memory. A significant decrease in synaptophysin and PSD95 proteins was found in the prefrontal cortex of THC pre-treated rats, with no alterations in the hippocampus. Finally, proteomic analysis of the synapses in the prefrontal cortex revealed the presence of less active synapses characterized by reduced ability in maintaining normal synaptic efficiency. This picture demonstrates the presence of cognitive impairment in THC-induced depressive phenotype.

130 citations


Journal ArticleDOI
TL;DR: The results point to the involvement of the endocannabinoid system in this pharmacological model of cognitive dysfunction, with a potentially different role of AEA and 2-AG in schizophrenia-like behaviours and suggest that prolonged cannabis use might aggravate cognitive performances induced by chronic PCP by throwing off-balance theendocannabinoids system.
Abstract: Recent advances in the neurobiology of cannabinoids have renewed interest in the association between cannabis and schizophrenia. Our studies showed that chronic-intermittent phencyclidine (PCP) treatment of rats, an animal model of schizophrenia-like cognitive deficit, impaired recognition memory in the novel object recognition (NOR) test and induced alterations in CB1 receptor functionality and in endocannabinoid levels mainly in the prefrontal cortex. In this region, we observed a significant reduction in GTPgammaS binding (-41%) accompanied by an increase in the levels of the endocannabinoid 2-AG (+38%) in PCP-treated rats, suggesting that a maladaptation of the endocannabinoid system might contribute to the glutamatergic-related cognitive symptoms encountered in schizophrenia disorders. Moreover, we evaluated the ability of the main psychoactive ingredient of marijuana, Delta9-tetrahydrocannabinol (THC), to modulate the cognitive dysfunctions and neuroadaptations in the endocannabinoid system induced by PCP. Chronic THC co-treatment worsened PCP-induced cognitive impairment, without inducing any effect per se, and in parallel, it provoked a severe reduction in the levels of the other endocannabinoid, AEA, vs. either vehicle (-73%) or PCP (-64%), whereas it reversed the PCP-induced increase in 2-AG levels. These results point to the involvement of the endocannabinoid system in this pharmacological model of cognitive dysfunction, with a potentially different role of AEA and 2-AG in schizophrenia-like behaviours and suggest that prolonged cannabis use might aggravate cognitive performances induced by chronic PCP by throwing off-balance the endocannabinoid system.

89 citations


Journal ArticleDOI
TL;DR: The literature here summarized, exploiting animal models of cannabis consumption, points to the presence of subtle changes in the adult brain circuits after heavy cannabis consumption in adolescence, which lead to impaired emotional and cognitive performance, enhanced vulnerability for the use of more harmful drugs of abuse, and may represent a risk factor for developing schizophrenia in adulthood.

85 citations


Journal ArticleDOI
TL;DR: Present results provide evidence for long-lasting effects of adolescent URB597 administration, which may have implications for the maturational end-point of the endocannabinoid system itself, which could lead to permanent alterations in neuronal brain circuits and behavioural responses.

35 citations


Journal ArticleDOI
TL;DR: Developmental exposure to the four selected PCB compounds used in the present study induced far-reaching effects in the adult offspring, the male rats appearing more sensitive than females.

31 citations


Journal ArticleDOI
TL;DR: It is indicated that chronic THC modulates the expression and subcellular localization of proteins implicated in Ras signaling, calcium-buffering potential, and trafficking.
Abstract: We have applied transcriptomic and proteomic techniques to identify changes in the RNA and the protein levels in the mouse cerebellum after chronic treatment with Δ9-tetrahydrocannabinol (THC). Among approximately 14,000 transcripts in a mouse cDNA microarray library, we found 11 genes with altered expression. RasGRF1, a neuron-specific Ras guanine nucleotide exchange factor, showed a reduction both at the RNA and protein levels with a specific decrease of the protein pool associated to cell membranes. In addition, proteomic analysis on cerebellum obtained from chronically THC-treated mice detected quantitative changes of additional 27 spots, mostly in the membranous fraction. We found enrichment of alpha (Gαo, Gαq) and beta subunits (β4/β2 and β5) of guanine nucleotide-binding proteins and of two calcium-binding proteins, calretinin and hippocalcin-like protein-1. In addition, we also detected a significant increase in the membrane fraction of proteins involved in exo–endocytosis such as septins, dynamin-1, and vesicle protein sorting 29. By western blotting, we confirmed increased membrane localization of calretinin and of dynamin-1 isoforms with higher isoelectric point, indicative for an underphosphorylated state of the molecule. In conclusion, our results indicate that chronic THC modulates the expression and subcellular localization of proteins implicated in Ras signaling, calcium-buffering potential, and trafficking.

28 citations