scispace - formally typeset
Search or ask a question

Showing papers by "David J. Heeger published in 2013"


Journal ArticleDOI
TL;DR: A synthetic stimuli replicating the higher-order statistical dependencies found in natural texture images was constructed and used to stimulate macaque V1 and V2 neurons, revealing a particular functional role for V2 in the representation of natural image structure.
Abstract: There is no generally accepted account of the function of the second visual cortical area (V2), partly because no simple response properties robustly distinguish V2 neurons from those in primary visual cortex (V1). We constructed synthetic stimuli replicating the higher-order statistical dependencies found in natural texture images, and used them to stimulate macaque V1 and V2 neurons. Most V2 cells responded more vigorously to these textures than to control stimuli lacking naturalistic structure; V1 cells did not. fMRI measurements in humans revealed differences between V1 and V2 that paralleled the neuronal measurements. The ability of human observers to detect naturalistic structure in different types of texture was well predicted by the strength of neuronal and fMRI responses in V2 but not in V1. Together, these results reveal a novel and particular role for V2 in the representation of natural image structure.

310 citations


Journal ArticleDOI
TL;DR: On page 52 of this article, in the legend for figure 1, the text “lower concentrations are shown by lighter colours” should have read “ lower concentrations are show by darker colours’.
Abstract: Nature Reviews Neuroscience 13, 51–62 (2012) On page 52 of this article, in the legend for figure 1, the text “lower concentrations are shown by lighter colours” should have read “lower concentrations are shown by darker colours”. This has been corrected in the online version.

281 citations


Journal ArticleDOI
TL;DR: The neural color spaces in two visual areas, human ventral V4 and VO1, exhibited clustering for the color-naming task, but not for the diverted attention task, and a model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons.
Abstract: Cortical activity was measured with functional magnetic resonance imaging (fMRI) while human subjects viewed 12 stimulus colors and performed either a color-naming or diverted attention task. A forward model was used to extract lower dimensional neural color spaces from the high-dimensional fMRI responses. The neural color spaces in two visual areas, human ventral V4 (V4v) and VO1, exhibited clustering (greater similarity between activity patterns evoked by stimulus colors within a perceptual category, compared to between-category colors) for the color-naming task, but not for the diverted attention task. Response amplitudes and signal-to-noise ratios were higher in most visual cortical areas for color naming compared to diverted attention. But only in V4v and VO1 did the cortical representation of color change to a categorical color space. A model is presented that induces such a categorical representation by changing the response gains of subpopulations of color-selective neurons.

177 citations


Journal ArticleDOI
TL;DR: It is inferred that CFS is based on modulating the gain of neural responses, akin to reducing target contrast, and also begins characterizing the computational processes underlying CFS.
Abstract: A salient visual stimulus can be rendered invisible by presenting it to one eye while flashing a mask to the other eye. This procedure, called continuous flash suppression (CFS), has been proposed as an ideal way of studying awareness as it can make a stimulus imperceptible for extended periods of time. Previous studies have reported robust suppression of cortical activity in higher visual areas during CFS, but the role of primary visual cortex (V1) is still controversial. In this study, we resolve this controversy on the role of V1 in CFS and also begin characterizing the computational processes underlying CFS. Early visual cortical activity was measured with functional magnetic resonance imaging while human subjects viewed stimuli composed of target and mask, presented to the same or different eyes. Functional MRI responses in early visual cortex were smaller when target and mask were in different eyes compared with the same eye, not only for the lowest contrast target rendered invisible by CFS, but also for higher contrast targets, which were visible even when presented to the eye opposite the mask. We infer that CFS is based on modulating the gain of neural responses, akin to reducing target contrast.

98 citations


Journal ArticleDOI
TL;DR: This work proposes a robust class of models that rely on ocular opponency neurons, previously proposed as a mechanism for efficient stereo coding, to yield rivalry only for dichoptic gratings, not for plaids.
Abstract: Binocular rivalry and cross-orientation suppression are well-studied forms of competition in visual cortex, but models of these two types of competition are in tension with one another. Binocular rivalry occurs during the presentation of dichoptic grating stimuli, where two orthogonal gratings presented separately to the two eyes evoke strong alternations in perceptual dominance. Cross-orientation suppression occurs during the presentation of plaid stimuli, where the responses to a component grating presented to both eyes is weakened by the presence of a superimposed orthogonal grating. Conventional models of rivalry that rely on strong competition between orientation-selective neurons incorrectly predict rivalry between the components of plaids. Lowering the inhibitory weights in such models reduces rivalry for plaids, but also reduces it for dichoptic gratings. Using an exhaustive grid search, we show that this problem cannot be solved simply by adjusting the parameters of the model. Instead, we propose a robust class of models that rely on ocular opponency neurons, previously proposed as a mechanism for efficient stereo coding, to yield rivalry only for dichoptic gratings, not for plaids. This class of models reconciles models of binocular rivalry with the divisive normalization framework that has been used to explain cross-orientation. Our model makes novel predictions that we confirmed with psychophysical tests.

94 citations


Journal ArticleDOI
TL;DR: A bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1 is demonstrated.
Abstract: Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1.

67 citations


Journal ArticleDOI
TL;DR: The results do not conclusively rule out an excitation/inhibition imbalance in the visual system of those with autism, but they suggest that such an imbalance, if it exists, is likely to be small in magnitude.

60 citations


Journal ArticleDOI
TL;DR: It is concluded that responses in retinotopically organized visual cortical areas are modulated by gain fields qualitatively similar to those previously observed neurophysiologically.
Abstract: To locate visual objects, the brain combines information about retinal location and direction of gaze. Studies in monkeys have demonstrated that eye position modulates the gain of visual signals with “gain fields,” so that single neurons represent both retinotopic location and eye position. We wished to know whether eye position and retinotopic stimulus location are both represented in human visual cortex. Using functional magnetic resonance imaging, we measured separately for each of several different gaze positions cortical responses to stimuli that varied periodically in retinal locus. Visually evoked responses were periodic following the periodic retinotopic stimulation. Only the response amplitudes depended on eye position; response phases were indistinguishable across eye positions. We used multivoxel pattern analysis to decode eye position from the spatial pattern of response amplitudes. The decoder reliably discriminated eye position in five of the early visual cortical areas by taking advantage of a spatially heterogeneous eye position-dependent modulation of cortical activity. We conclude that responses in retinotopically organized visual cortical areas are modulated by gain fields qualitatively similar to those previously observed neurophysiologically.

52 citations


Journal ArticleDOI
TL;DR: In all three experiments, it is found that exogenous attention modulated visual discriminability in a group of high-functioning adults with ASD and that it did so in the same way and to the same extent as in a matched control group.
Abstract: Deficits or atypicalities in attention have been reported in individuals with autism spectrum disorder (ASD), yet no consensus on the nature of these deficits has emerged. We conducted three experiments that paired a peripheral precue with a covert discrimination task, using protocols for which the effects of covert exogenous spatial attention on early vision have been well established in typically developing populations. Experiment 1 assessed changes in contrast sensitivity, using orientation discrimination of a contrast-defined grating; Experiment 2 evaluated the reduction of crowding in the visual periphery, using discrimination of a letter-like figure with flanking stimuli at variable distances; and Experiment 3 assessed improvements in visual search, using discrimination of the same letter-like figure with a variable number of distractor elements. In all three experiments, we found that exogenous attention modulated visual discriminability in a group of high-functioning adults with ASD and that it did so in the same way and to the same extent as in a matched control group. We found no evidence to support the hypothesis that deficits in exogenous spatial attention underlie the emergence of core ASD symptomatology.

47 citations


Journal ArticleDOI
TL;DR: FMRI is used to link correlated activity fluctuations across human visual cortical areas V1 through V4 to the dynamics (rate and duration) of MIB target disappearance and suggests different levels of the visual cortical hierarchy shape the dynamics of perception via distinct mechanisms.
Abstract: While viewing certain stimuli, perception changes spontaneously in the face of constant input. For example, during "motion-induced blindness" (MIB), a small salient target spontaneously disappears and reappears when surrounded by a moving mask. Models of such bistable perceptual phenomena posit spontaneous fluctuations in neuronal activity throughout multiple stages of the visual cortical hierarchy. We used fMRI to link correlated activity fluctuations across human visual cortical areas V1 through V4 to the dynamics (rate and duration) of MIB target disappearance. We computed the correlations between the time series of fMRI activity in multiple retinotopic subregions corresponding to MIB target and mask. Linear decomposition of the matrix of temporal correlations revealed spatial patterns of activity fluctuations, regardless of whether or not these were time-locked to behavioral reports of target disappearance. The spatial pattern that dominated the activity fluctuations during MIB was spatially nonspecific, shared by all subregions, but did not reflect the dynamics of perception. By contrast, the fluctuations associated with the rate of MIB disappearance were retinotopically specific for the target subregion in V4, and the fluctuations associated with the duration of MIB disappearance states were target-specific in V1. Target-specific fluctuations in V1 have not previously been identified by averaging activity time-locked to behavioral reports of MIB disappearance. Our results suggest that different levels of the visual cortical hierarchy shape the dynamics of perception via distinct mechanisms, which are evident in distinct spatial patterns of spontaneous cortical activity fluctuations.

43 citations


Journal ArticleDOI
TL;DR: It is found that high‐functioning adults with autism exhibited slower reaction times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals in all three experiments.
Abstract: Rapid manipulation of the attention field (i.e. the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three psychophysical experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured the spatial distribution of performance accuracies and reaction times to quantify the sizes and locations of the attention field, with and without spatial uncertainty (i.e. the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high-functioning adults with autism exhibited slower reaction times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals in all three experiments. These results provide evidence of intact endogenous spatial attention function in high-functioning adults with ASD, suggesting that atypical endogenous attention cannot be a latent characteristic of autism in general.

Patent
25 Mar 2013
TL;DR: In this article, the etiology for reduced or impaired cranial nerve function or conduction or associat cranial nucleus or supranuclear input, useful for detecting, diagnosing, monitoring progression of or screenin for a disease or condition featuring increased intracranial pressure by tracking eye movement o the subject.
Abstract: The invention provides methods and kits for detecting, screening, quantifying orlocalizing the etiology for reduced or impaired cranial nerve function or conduction or associat cranial nucleus or supranuclear input, useful for detecting, diagnosing or screening for increas intracranial pressure, or useful for detecting, diagnosing, monitoring progression of or screenin for a disease or condition featuring increased intracranial pressure by tracking eye movement o the subject. The methods may be performed by a) analyzing eye movement of the subject; b) comparing eye movement of the subject to eye movement of a control or the subject's own baseline eye movement; and c) identifying the subject as having eye movement significantly different from the control or the subject's own baseline eye movement.