scispace - formally typeset
D

David L. Donoho

Researcher at Stanford University

Publications -  273
Citations -  115802

David L. Donoho is an academic researcher from Stanford University. The author has contributed to research in topics: Wavelet & Compressed sensing. The author has an hindex of 110, co-authored 271 publications receiving 108027 citations. Previous affiliations of David L. Donoho include University of California, Berkeley & Western Geophysical.

Papers
More filters
Journal ArticleDOI

Atomic Decomposition by Basis Pursuit

TL;DR: This work gives examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution, and obtains reasonable success with a primal-dual logarithmic barrier method and conjugate-gradient solver.
Journal ArticleDOI

Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization

TL;DR: This article obtains parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems, and sketches three applications: separating linear features from planar ones in 3D data, noncooperative multiuser encoding, and identification of over-complete independent component models.
Journal ArticleDOI

For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution

TL;DR: In this article, the authors consider linear equations y = Φx where y is a given vector in ℝn and Φ is a n × m matrix with n 0 so that for large n and for all Φ's except a negligible fraction, the solution x1of the 1-minimization problem is unique and equal to x0.
Journal ArticleDOI

Fast Discrete Curvelet Transforms

TL;DR: This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform in two and three dimensions, based on unequally spaced fast Fourier transforms, while the second is based on the wrapping of specially selected Fourier samples.
Journal ArticleDOI

Message-passing algorithms for compressed sensing

TL;DR: A simple costless modification to iterative thresholding is introduced making the sparsity–undersampling tradeoff of the new algorithms equivalent to that of the corresponding convex optimization procedures, inspired by belief propagation in graphical models.