scispace - formally typeset
E

Emmanuel J. Candès

Researcher at Stanford University

Publications -  280
Citations -  148481

Emmanuel J. Candès is an academic researcher from Stanford University. The author has contributed to research in topics: Convex optimization & Compressed sensing. The author has an hindex of 102, co-authored 262 publications receiving 135077 citations. Previous affiliations of Emmanuel J. Candès include Samsung & École Normale Supérieure.

Papers
More filters
Journal ArticleDOI

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Journal ArticleDOI

An Introduction To Compressive Sampling

TL;DR: The theory of compressive sampling, also known as compressed sensing or CS, is surveyed, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition.
Journal ArticleDOI

Decoding by linear programming

TL;DR: F can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program) and numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted.
Journal ArticleDOI

Robust principal component analysis

TL;DR: In this paper, the authors prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm.
Journal ArticleDOI

Stable signal recovery from incomplete and inaccurate measurements

TL;DR: In this paper, the authors considered the problem of recovering a vector x ∈ R^m from incomplete and contaminated observations y = Ax ∈ e + e, where e is an error term.