scispace - formally typeset
Journal ArticleDOI

For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution

David L. Donoho
- 01 Jun 2006 - 
- Vol. 59, Iss: 6, pp 797-829
TLDR
In this article, the authors consider linear equations y = Φx where y is a given vector in ℝn and Φ is a n × m matrix with n 0 so that for large n and for all Φ's except a negligible fraction, the solution x1of the 1-minimization problem is unique and equal to x0.
Abstract
We consider linear equations y = Φx where y is a given vector in ℝn and Φ is a given n × m matrix with n 0 so that for large n and for all Φ's except a negligible fraction, the following property holds: For every y having a representation y = Φx0by a coefficient vector x0 ∈ ℝmwith fewer than ρ · n nonzeros, the solution x1of the 1-minimization problem is unique and equal to x0. In contrast, heuristic attempts to sparsely solve such systems—greedy algorithms and thresholding—perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almost-spherical sections in Banach space theory, and deviation bounds for the eigenvalues of random Wishart matrices. © 2006 Wiley Periodicals, Inc.

read more

Citations
More filters
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Journal ArticleDOI

Robust Face Recognition via Sparse Representation

TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Journal ArticleDOI

$rm K$ -SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation

TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.
Journal ArticleDOI

Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit

TL;DR: It is demonstrated theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal.

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
References
More filters
Journal ArticleDOI

Atomic Decomposition by Basis Pursuit

TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Journal ArticleDOI

Matching pursuits with time-frequency dictionaries

TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Journal ArticleDOI

Greed is good: algorithmic results for sparse approximation

TL;DR: This article presents new results on using a greedy algorithm, orthogonal matching pursuit (OMP), to solve the sparse approximation problem over redundant dictionaries and develops a sufficient condition under which OMP can identify atoms from an optimal approximation of a nonsparse signal.
Journal ArticleDOI

Entropy-based algorithms for best basis selection

TL;DR: Adapted waveform analysis uses a library of orthonormal bases and an efficiency functional to match a basis to a given signal or family of signals, and relies heavily on the remarkable orthogonality properties of the new libraries.
Journal ArticleDOI

Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization

TL;DR: This article obtains parallel results in a more general setting, where the dictionary D can arise from two or several bases, frames, or even less structured systems, and sketches three applications: separating linear features from planar ones in 3D data, noncooperative multiuser encoding, and identification of over-complete independent component models.
Related Papers (5)
Trending Questions (1)
What are the solutions to the system of linear equations -x y=1?

The paper does not provide specific solutions to the system of linear equations -x + y = 1.