scispace - formally typeset
Search or ask a question

Showing papers by "Dennis Bruemmer published in 2005"


Journal ArticleDOI
TL;DR: It is demonstrated here that LXR ligands inhibit cytokine-induced OPN expression in macrophages and identified an activator protein-1 (AP-1) consensus site at -76 relative to the initiation site that supports OPN transcription in macophages and mediates the effects of LXRligands to inhibit OPN gene expression.
Abstract: Osteopontin (OPN) is a proinflammatory cytokine and adhesion molecule implicated in the chemoattraction of monocytes and in cell-mediated immunity. We have recently reported that genetic OPN-deficiency attenuates the development of atherosclerosis in apoE−/− mice identifying OPN as potential target for pharmacological intervention in atherosclerosis. Synthetic agonists for the Liver X Receptor (LXR), members of the nuclear hormone receptor superfamily, prevent the development of atherosclerosis by regulating cholesterol homeostasis and suppressing inflammatory gene expression in macrophages. We demonstrate here that LXR ligands inhibit cytokine-induced OPN expression in macrophages. Two synthetic LXR ligands, T0901317 and GW3965, inhibited TNF-α, IL-1β, INF-γ and lipopolysaccharide induced OPN mRNA and protein expression in RAW 264.7 macrophages. Transient transfection experiments revealed that LXR ligands suppress cytokine-induced OPN promoter activity. Deletion analysis, heterologous promoter assays, an...

107 citations


Journal ArticleDOI
TL;DR: It is demonstrated that angiotensin II induces PPARγ expression and ligand‐mediated PParγ activity via AT2 receptor activation, which appears to be a crucial process in AT2 receptors mediated neurite outgrowth.
Abstract: The angiotensin type 2 (AT2) receptor has been previously demonstrated to exert neuroprotective actions possibly by inducing neuronal cell differentiation involving neurite outgrowth. The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is an important transcriptional regulator of cell differentiation. The aim of the present study was to clarify whether PPARgamma is involved in AT2-receptor-mediated morphological neuronal cell differentiation. To investigate AT2-receptor-mediated morphological neuronal cell differentiation, rat pheochromocytoma cells (PC12W cells) expressing AT2 but not AT1 receptors, were stimulated with angiotensin II (Ang II, 100 nmol/L) +/- the PPARgamma antagonists GW9662 (3 micromol/L) and bisphenol A diglycidyl ether (BADGE, 1 micromol/L), and neurite outgrowth of these cells was assessed. Ang II induced neurite outgrowth by 19 +/- 1.6-fold (p < 0.01). Antagonizing PPARgamma activity by GW9662 or BADGE potently blocked Ang II-induced neurite outgrowth (Ang II + GW9662: 6.6 +/- 1.5-fold, p < 0.05; Ang II + BADGE: 1.3 +/- 0.7-fold, p < 0.01). AT2 receptor activation by Ang II markedly induced mRNA and protein expression of the PPARgamma2 isoform and enhanced ligand-induced PPARgamma activity in transactivation assays. In conclusion, the present study demonstrates that Ang II induces PPARgamma expression and ligand-mediated PPARgamma activity via AT2 receptor activation, which appears to be a crucial process in AT2 receptor mediated neurite outgrowth. AT2 receptor/PPARgamma-dependent neurite outgrowth may play an important role during neuroprotective processes.

46 citations


Journal ArticleDOI
TL;DR: It is demonstrated that chronic Ang II infusion substantially promotes macrophage infiltration, foam cell formation, and atherosclerosis in low-density lipoprotein receptor-deficient mice and significantly reduces ABCA1 expression in peripheral macrophages.
Abstract: Angiotensin II (Ang II) is a powerful accelerator of atherosclerosis. Herein, we describe a novel transcription mechanism through which Ang II inhibits macrophage expression of the ATP-binding cassette transporter A1 (ABCA1), a key regulator of reverse cholesterol transport. We demonstrate that chronic Ang II infusion substantially promotes macrophage infiltration, foam cell formation, and atherosclerosis in low-density lipoprotein receptor-deficient mice and significantly reduces ABCA1 expression in peripheral macrophages. Administration of the Ang II type 1 receptor blocker valsartan inhibited Ang II-induced ABCA1 mRNA repression, macrophage cholesterol accumulation, and atherosclerosis. Ang II treatment reduced ABCA1 promoter activity of in vitro cultured mouse peritoneal macrophages, inducing fos-related antigen 2 (Fra2) protein binding to an ABCA1 promoter E-box motif, a site known to negatively regulate macrophage ABCA1 transcription. Valsartan pretreatment blocked Fra2 binding to the ABCA1 promoter, and Fra2 small interfering RNA pretreatment attenuated Ang II-mediated ABCA1 transcriptional inhibition, confirming the role of Fra2 in this process. This new evidence suggests that Ang II, a well-known proinflammatory and pro-oxidative factor, alters macrophage cholesterol homeostasis by repressing ABCA1 to promote foam cell formation and atherosclerosis.

41 citations


Journal ArticleDOI
TL;DR: The important roles of LXR in metabolism and vascular biology are summarized and its implications as potential molecular drug target for the treatment of cardiovascular diseases are discussed.
Abstract: The Liver X Receptors, LXRalpha and LXRbeta are members of the nuclear hormone receptor superfamily which have recently been implicated as novel pharmacological targets for the treatment of cardiovascular diseases. The identification of natural and synthetic ligands for LXRs and the generation of LXR-deficient mice have been crucial for our understanding of the function of these receptors and for the identification of LXR-regulated target genes, particularly with respect to the role of LXRs in regulating cholesterol homeostasis. Synthetic LXRalpha/beta agonists induce cholesterol efflux and reverse cholesterol transport, improve glucose metabolism, inhibit macrophage-derived inflammation, and suppress the proliferation of vascular smooth muscle cells. By regulating the expression of multiple genes involved in these pathways, LXR agonists prevent the development and progression of atherosclerosis and inhibit neointima formation following angioplasty of the arterial wall. In this review, we will summarize the important roles of LXR in metabolism and vascular biology and discuss its implications as potential molecular drug target for the treatment of cardiovascular diseases.

22 citations