scispace - formally typeset
Search or ask a question

Showing papers by "Edwin A. Valentijn published in 2014"


Journal ArticleDOI
TL;DR: In this paper, scaling relations between structural properties of nuclear star clusters and their host galaxies for a sample of early-type dwarf galaxies observed as part of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Coma Cluster Survey were presented.
Abstract: We present scaling relations between structural properties of nuclear star clusters and their host galaxies for a sample of early-type dwarf galaxies observed as part of the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Coma Cluster Survey. We have analysed the light profiles of 200 early-type dwarf galaxies in the magnitude range 16.0 < mF814W < 22.6 mag, corresponding to -19.0 < MF814W < -12.4 mag. Nuclear star clusters are detected in 80 per cent of the galaxies, thus doubling the sample of HST-observed early-type dwarf galaxies with nuclear star clusters.We confirm that the nuclear star cluster detection fraction decreases strongly towards faint magnitudes. The luminosities of nuclear star clusters do not scale linearly with host galaxy luminosity. A linear fit yields Lnuc ~ L0.57±0.05 gal. The nuclear star cluster–host galaxy luminosity scaling relation for low-mass early-type dwarf galaxies is consistent with formation by globular cluster (GC) accretion. We find that at similar luminosities, galaxies with higher S´ersic indices have slightly more luminous nuclear star clusters. Rounder galaxies have on average more luminous clusters. Some of the nuclear star clusters are resolved, despite the distance of Coma. We argue that the relation between nuclear star cluster mass and size is consistent with both formation by GC accretion and in situ formation. Our data are consistent with GC inspiralling being the dominant mechanism at low masses, although the observed trend with S´ersic index suggests that in situ star formation is an important second-order effect.

111 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented new deep images of the Coma Cluster from the ESA Herschel Space Observatory at wavelengths of 70, 100 and 160μm, covering an area of 1.75 × 1.0 square degrees encompassing the core and south-west infall region.
Abstract: We present new deep images of the Coma Cluster from the ESA Herschel Space Observatory at wavelengths of 70, 100 and 160 μm, covering an area of 1.75 × 1.0 square degrees encompassing the core and south-west infall region. Our data display an excess of sources at flux densities above 100 mJy compared to blank-field surveys, as expected. We use extensive optical spectroscopy of this region to identify cluster members and hence produce cluster luminosity functions in all three photometric bands. We compare our results to the local field galaxy luminosity function, and the luminosity functions from the Herschel Virgo Cluster Survey. We find consistency between the shapes of the Coma and field galaxy luminosity functions at all three wavelengths; however, we do not find the same level of agreement with that of the Virgo Cluster.

5 citations


DOI
01 Jan 2014
TL;DR: The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid.
Abstract: The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science Data Centres in at least eight countries. There are strict requirements both on data quality control and traceability of the data processing. Data volumes will be greater than 10 Pbyte, with the actual volume being dependent on the amount of reprocessing required.

2 citations


DOI
04 Nov 2014
TL;DR: The WISE Concept of Scientific Information Systems and the WISE solutions for the storage and processing as applied to Big Data are reviewed.
Abstract: The effective use of Big Data in current and future scientific missions requires intelligent data handling systems which are able to interface the user to complicated distributed data collections. We review the WISE Concept of Scientific Information Systems and the WISE solutions for the storage and processing as applied to Big Data.

1 citations