scispace - formally typeset
Search or ask a question

Showing papers by "Georg Zeller published in 2009"


Journal ArticleDOI
TL;DR: Introgression patterns of shared SNPs revealed the breeding history and relationships among the 20 varieties; some introgressed regions are associated with agronomic traits that mark major milestones in rice improvement.
Abstract: Rice, the primary source of dietary calories for half of humanity, is the first crop plant for which a high-quality reference genome sequence from a single variety was produced. We used resequencing microarrays to interrogate 100 Mb of the unique fraction of the reference genome for 20 diverse varieties and landraces that capture the impressive genotypic and phenotypic diversity of domesticated rice. Here, we report the distribution of 160,000 nonredundant SNPs. Introgression patterns of shared SNPs revealed the breeding history and relationships among the 20 varieties; some introgressed regions are associated with agronomic traits that mark major milestones in rice improvement. These comprehensive SNP data provide a foundation for deep exploration of rice diversity and gene–trait relationships and their use for future rice improvement.

603 citations


Journal ArticleDOI
TL;DR: In this article, the effects of salt, osmotic, cold and heat stress as well as application of the hormone abscisic acid (ABA), an important mediator of stress responses, were analyzed in the Arabidopsis thaliana transcriptome.
Abstract: The responses of plants to abiotic stresses are accompanied by massive changes in transcriptome composition. To provide a comprehensive view of stress-induced changes in the Arabidopsis thaliana transcriptome, we have used whole-genome tiling arrays to analyze the effects of salt, osmotic, cold and heat stress as well as application of the hormone abscisic acid (ABA), an important mediator of stress responses. Among annotated genes in the reference strain Columbia we have found many stress-responsive genes, including several transcription factor genes as well as pseudogenes and transposons that have been missed in previous analyses with standard expression arrays. In addition, we report hundreds of newly identified, stress-induced transcribed regions. These often overlap with known, annotated genes. The results are accessible through the Arabidopsis thaliana Tiling Array Express (At-TAX) homepage, which provides convenient tools for displaying expression values of annotated genes, as well as visualization of unannotated transcribed regions along each chromosome.

301 citations


Journal ArticleDOI
TL;DR: An in-depth analysis of mGene's genome-wide predictions revealed that approximately 2200 predicted genes were not contained in the current genome annotation, suggesting that even the gene catalog of a well-studied organism such as C. elegans can be substantially improved by m Gene's predictions.
Abstract: We present a highly accurate gene-prediction system for eukaryotic genomes, called mGene. It combines in an unprecedented manner the flexibility of generalized hidden Markov models (gHMMs) with the predictive power of modern machine learning methods, such as Support Vector Machines (SVMs). Its excellent performance was proved in an objective competition based on the genome of the nematode Caenorhabditis elegans. Considering the average of sensitivity and specificity, the developmental version of mGene exhibited the best prediction performance on nucleotide, exon, and transcript level for ab initio and multiple-genome gene-prediction tasks. The fully developed version shows superior performance in 10 out of 12 evaluation criteria compared with the other participating gene finders, including Fgenesh++ and Augustus. An in-depth analysis of mGene's genome-wide predictions revealed that ≈2200 predicted genes were not contained in the current genome annotation. Testing a subset of 57 of these genes by RT-PCR and sequencing, we confirmed expression for 24 (42%) of them. mGene missed 300 annotated genes, out of which 205 were unconfirmed. RT-PCR testing of 24 of these genes resulted in a success rate of merely 8%. These findings suggest that even the gene catalog of a well-studied organism such as C. elegans can be substantially improved by mGene's predictions. We also provide gene predictions for the four nematodes C. briggsae, C. brenneri, C. japonica, and C. remanei. Comparing the resulting proteomes among these organisms and to the known protein universe, we identified many species-specific gene inventions. In a quality assessment of several available annotations for these genomes, we find that mGene's predictions are most accurate.

102 citations


Journal ArticleDOI
TL;DR: An approach to exploit this platform for quantitative mRNA expression analysis, and compare the results with those obtained using ATH1 arrays, and proposes a method for selecting unique tiling probes for each annotated gene or transcript in the most current genome annotation, TAIR7.
Abstract: The Affymetrix ATH1 array provides a robust standard tool for transcriptome analysis, but unfortunately does not represent all of the transcribed genes in Arabidopsis thaliana. Recently, Affymetrix has introduced its Arabidopsis Tiling 1.0R array, which offers whole-genome coverage of the sequenced Col-0 reference strain. Here, we present an approach to exploit this platform for quantitative mRNA expression analysis, and compare the results with those obtained using ATH1 arrays. We also propose a method for selecting unique tiling probes for each annotated gene or transcript in the most current genome annotation, TAIR7, generating Chip Definition Files for the Tiling 1.0R array. As a test case, we compared the transcriptome of wild-type plants with that of transgenic plants overproducing the heterodimeric E2Fa-DPa transcription factor. We show that with the appropriate data pre-processing, the estimated changes per gene for those with significantly different expression levels is very similar for the two array types. With the tiling arrays we could identify 368 new E2F-regulated genes, with a large fraction including an E2F motif in the promoter. The latter groups increase the number of excellent candidates for new, direct E2F targets by almost twofold, from 181 to 334.

72 citations


Journal ArticleDOI
TL;DR: The results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.
Abstract: In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5′ regulatory sequence variation in the corresponding genes is indeed increased. However, ∼42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL.

28 citations


Journal ArticleDOI
TL;DR: mGene.web as discussed by the authors is a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences, which is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously.
Abstract: We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms. With mGene.web, users have the additional possibility to train the system with their own data for other organisms on the push of a button, a functionality that will greatly accelerate the annotation of newly sequenced genomes. The system is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously. The underlying gene finding system mGene is based on discriminative machine learning techniques and its high accuracy has been demonstrated in an international competition on nematode genomes. mGene.web is available at http://www.mgene.org/web, it is free of charge and can be used for eukaryotic genomes of small to moderate size (several hundred Mbp).

25 citations