scispace - formally typeset
Search or ask a question

Showing papers by "George R. MacCartney published in 2016"


Proceedings ArticleDOI
15 May 2016
TL;DR: This document describes an initial 3D channel model which includes a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios of 5G channel models for bands up to 100 GHz.
Abstract: For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.

281 citations


Proceedings ArticleDOI
15 May 2016
TL;DR: Small-scale fading measurements for 28 GHz outdoor millimeter-wave ultrawideband channels using directional horn antennas at the transmitter and receiver are presented and signal amplitudes reach a correlation of 0 after 2 and 5 wavelengths in LOS and NLOS co-polarized V-V antenna scenarios.
Abstract: This paper presents small-scale fading measurements for 28 GHz outdoor millimeter-wave ultrawideband channels using directional horn antennas at the transmitter and receiver. Power delay profiles were measured at half-wavelength spatial increments over a local area (33 wavelengths) on a linear track in two orthogonal receiver directions in a typical base-to-mobile scenario with fixed transmitter and receiver antenna beam pointing directions. The voltage path amplitudes are shown to follow a Rician distribution, with K-factor ranging from 9 - 15 dB and 5 - 8 dB in line of sight (LOS) and non-line of sight (NLOS) for a vertical-to-vertical co- polarized antenna scenario, respectively, and from 3 - 7 dB in both LOS and NLOS vertical-to- horizontal cross-polarized antenna scenario. The average spatial autocorrelation functions of individual multipath components reveal that signal amplitudes reach a correlation of 0 after 2 and 5 wavelengths in LOS and NLOS co-polarized V-V antenna scenarios. The models provided are useful for recreating path gain statistics of millimeter- wave wideband channel impulse responses over local areas, for the study of multi-element antenna simulations and channel estimation algorithms.

220 citations


Proceedings ArticleDOI
02 Jul 2016
TL;DR: In this paper, the shadowing effect of a moving human body when using directional antennas at the transmitter and receiver for millimeter-wave radio communications is investigated. But the authors focus on a point-to-point link with a 5 m transmitter-receiver separation distance in an indoor environment, with a human that walks at a speed of approximately 1 m/s at a perpendicular orientation to the line between the transmitters and receivers, at various distances between them.
Abstract: This paper presents 73 GHz human blockage measurements for a point-to-point link with a 5 m transmitter-receiver separation distance in an indoor environment, with a human that walked at a speed of approximately 1 m/s at a perpendicular orientation to the line between the transmitter and receiver, at various distances between them. The experiment measures the shadowing effect of a moving human body when using directional antennas at the transmitter and receiver for millimeter- wave radio communications. The measurements were conducted using a 500 Megachips-per-second wideband correlator channel sounder with a 1 GHz first null-to-null RF bandwidth. Results indicate high shadowing attenuation is not just due to the human blocker but also is due to the static directional nature of the antennas used, leading to the need for phased-array antennas to switch beam directions in the presence of obstructions and blockages at millimeter-waves. A simple model for human blockage is provided based on the double knife-edge diffraction (DKED) model where humans are approximated by a rectangular screen with infinite vertical height, similar to the human blockage model given by the METIS project.

153 citations


Journal ArticleDOI
TL;DR: In this article, the authors provided similar correction factors for models at 60 GHz and 73 GHz, by imparting slope correction factors on the theoretical free space (FS) and SUI path loss models to closely match the close-in (CI) free space reference distance path loss model.
Abstract: Fifth-generation (5G) cellular systems are likely to operate in the centimeter-wave (3–30 GHz) and millimeter-wave (30–300 GHz) frequency bands, where a vast amount of underutilized bandwidth exists world-wide. To assist in the research and development of these emerging wireless systems, a myriad of measurement studies have been conducted to characterize path loss in urban environments at these frequencies. The standard theoretical free space (FS) and Stanford University Interim (SUI) empirical path loss models were recently modified to fit path loss models obtained from measurements performed at 28 GHz and 38 GHz, using simple correction factors. In this paper, we provide similar correction factors for models at 60 GHz and 73 GHz. By imparting slope correction factors on the FS and SUI path loss models to closely match the close-in (CI) free space reference distance path loss models, millimeter-wave path loss can be accurately estimated (with popular models) for 5G cellular planning at 60 GHz and 73 GHz. Additionally, new millimeter-wave beam combining path loss models are provided at 28 GHz and 73 GHz by considering the simultaneous combination of signals from multiple antenna pointing directions between the transmitter and receiver that result in the strongest received power. Such directional channel models are important for future adaptive array systems at millimeter-wave frequencies.

129 citations


Proceedings ArticleDOI
10 Apr 2016
TL;DR: This work shows that both the CI and CIF models use fewer parameters and offer more convenient closed-form expressions suitable for analysis, without compromising model accuracy when compared to current 3GPP and WINNER path loss models.
Abstract: This paper presents millimeter-wave propagation measurements for urban micro-cellular and indoor office scenarios at 28 GHz and 73 GHz, and investigates the corresponding path loss using five types of path loss models, the single-frequency floating-intercept (FI) model, single-frequency close-in (CI) free space reference distance model, multi-frequency alpha-beta-gamma (ABG) model, multi-frequency CI model, and multi-frequency CI model with a frequency-weighted path loss exponent (CIF), in both line-of-sight and non-line-of-sight environments. Results show that the CI and CIF models provide good estimation and exhibit stable behavior over frequencies and distances, with a solid physical basis and less computational complexity when compared with the FI and ABG models. Furthermore, path loss in outdoor scenarios shows little dependence on frequency beyond the first meter of free space propagation, whereas path loss tends to increase with frequency in addition to the increased free space path loss in indoor environments. Therefore, the CI model is suitable for outdoor environments over multiple frequencies, while the CIF model is more appropriate for indoor modeling. This work shows that both the CI and CIF models use fewer parameters and offer more convenient closed-form expressions suitable for analysis, without compromising model accuracy when compared to current 3GPP and WINNER path loss models.

126 citations


Proceedings ArticleDOI
23 May 2016
TL;DR: The measurements indicate that the smaller wavelengths introduce an increased sensitivity of the propagation models to the scale of the environment and show some frequency dependence of the path loss as well as increased occurrence of blockage.
Abstract: Future mobile communications systems are likely to be very different to those of today with new service innovations driven by increasing data traffic demand, increasing processing power of smart devices and new innovative applications. To meet these service demands the telecommunications industry is converging on a common set of 5G requirements which includes network speeds as high as 10 Gbps, cell edge rate greater than 100 Mbps, and latency of less than 1 msec. To reach these 5G requirements the industry is looking at new spectrum bands in the range up to 100 GHz where there is spectrum availability for wide bandwidth channels. For the development of new 5G systems to operate in bands up to 100 GHz there is a need for accurate radio propagation models which are not addressed by existing channel models developed for bands below 6 GHz. This paper presents a preliminary overview of the 5G channel models for bands up to 100 GHz in indoor offices and shopping malls, derived from extensive measurements across a multitude of bands. These studies have found some extensibility of the existing 3GPP models (e.g. 3GPP TR36.873) to the higher frequency bands up to 100 GHz. The measurements indicate that the smaller wavelengths introduce an increased sensitivity of the propagation models to the scale of the environment and show some frequency dependence of the path loss as well as increased occurrence of blockage. Further, the penetration loss is highly dependent on the material and tends to increase with frequency. The small-scale characteristics of the channel such as delay spread and angular spread and the multipath richness is somewhat similar over the frequency range, which is encouraging for extending the existing 3GPP models to the wider frequency range. Further work will be carried out to complete these models, but this paper presents the first steps for an initial basis for the model development.

113 citations


Proceedings ArticleDOI
03 Oct 2016
TL;DR: In this paper, the authors presented a new rural macrocell (RMa) path loss model for millimeter wave frequencies, based on measurements at 73 GHz in rural Virginia, and showed the remarkable distances that can be achieved using millimeter-wave communications.
Abstract: This paper shows the remarkable distances that can be achieved using millimeter wave communications, and presents a new rural macrocell (RMa) path loss model for millimeter wave frequencies, based on measurements at 73 GHz in rural Virginia. Path loss models are needed to estimate signal coverage and interference for wireless network design, yet little is known about rural propagation at millimeter waves. This work identifies problems with the RMa model used by the 3rd Generation Partnership Project (3GPP) TR 38.900 Release 14, and offers a close-in (CI) reference distance model that has improved accuracy, fewer parameters, and better stability as compared with the existing 3GPP RMa path loss model. The measurements and models presented here are the first to validate rural millimeter wave path loss models.

62 citations



Proceedings ArticleDOI
01 Dec 2016
TL;DR: The KED model is shown to work well for indoor environments, and an empirical linear model with a fixed reference point is also presented and provides a better fit to the measured data around rounded corners in the outdoor environment.
Abstract: This paper presents diffraction measurements, analysis, and signal strength prediction models around objects such as corners, pillars, and irregular objects, at 10, 20, and 26 GHz. The diffraction measurements were conducted indoors and outdoors by using a continuous wave (CW) channel sounder with three pairs of identical directional horn antennas at the transmitter and receiver. The measurement results are compared with theoretical predictions based on the Knife Edge Diffraction (KED) in order to determine how well the theoretical model compares to real-world measurements. The KED model is shown to work well for indoor environments, and an empirical linear model with a fixed reference point is also presented and provides a better fit to the measured data around rounded corners in the outdoor environment. Diffraction loss is shown to increase with frequency in outdoor scenarios, but less so inside buildings due to reflection and transmission between walls. The model validation and new models will be useful for designing and calibrating ray-tracers and other wireless network simulators by simulating potential channel loss from diffraction around objects and understanding the impact of diffraction at centimeter-wave and millimeter-wave frequencies in indoor and outdoor environments.

55 citations


Proceedings ArticleDOI
15 May 2016
TL;DR: In this paper, the authors presented large-scale path loss models based on extensive ultra-wideband millimeter-wave propagation measurements performed at 28 GHz and 73 GHz in three typical indoor office layouts - namely: corridor, open-plan, and closed-plan.
Abstract: This paper presents large-scale path loss models based on extensive ultra-wideband millimeter-wave propagation measurements performed at 28 GHz and 73 GHz in three typical indoor office layouts - namely: corridor, open-plan, and closed-plan. A previous study combined all indoor layouts together, while this study separates them for site-specific indoor large-scale path loss model analysis. Measurements were conducted using a 400 megachips-per-second broadband sliding correlator channel sounder with 800 MHz first null-to-null RF bandwidth for 48 transmitter- receiver location combinations with distances ranging 3.9 m to 45.9 m for both co- and cross-polarized antenna configurations in line-of-sight and non-line-of-sight environments. Omnidirectional path loss values were synthesized from over 14,000 directional power delay profiles and were used to generate single-frequency and multi-frequency path loss models for combined, co-, and cross-polarized antennas. Large-scale path loss models that include a cross-polarization discrimination factor are provided for cross-polarized antenna measurements. The results show the value of using the close-in free space reference distance single and multi-frequency path loss models, as they offer simplicity (less parameters) in path loss calculation and prediction, without sacrificing accuracy. Moreover, the current 3GPP floating-intercept path loss model only requires a simple and subtle modification to convert to the close-in free space reference distance models.

36 citations


Posted Content
TL;DR: Results indicate high shadowing attenuation is not just due to the human blocker but also isdue to the static directional nature of the antennas used, leading to the need for phased-array antennas to switch beam directions in the presence of obstructions and blockages at millimeter-waves.
Abstract: This paper presents 73 GHz human blockage measurements for a point-to-point link with a 5 m transmitter-receiver separation distance in an indoor environment, with a human that walked at a speed of approximately 1 m/s at a perpendicular orientation to the line between the transmitter and receiver, at various distances between them. The experiment measures the shadowing effect of a moving human body when using directional antennas at the transmitter and receiver for millimeter-wave radio communications. The measurements were conducted using a 500 Megachips-per-second wideband correlator channel sounder with a 1 GHz first null-to-null RF bandwidth. Results indicate high shadowing attenuation is not just due to the human blocker but also is due to the static directional nature of the antennas used, leading to the need for phased-array antennas to switch beam directions in the presence of obstructions and blockages at millimeter-waves. A simple model for human blockage is provided based on the double knife-edge diffraction (DKED) model where humans are approximated by a rectangular screen with infinite vertical height, similar to the human blockage model given by the METIS project.

Proceedings ArticleDOI
TL;DR: In this paper, the authors present a preliminary overview of the 5G channel models for bands up to 100 GHz in indoor offices and shopping malls, derived from extensive measurements across a multitude of bands.
Abstract: Future mobile communications systems are likely to be very different to those of today with new service innovations driven by increasing data traffic demand, increasing processing power of smart devices and new innovative applications. To meet these service demands the telecommunications industry is converging on a common set of 5G requirements which includes network speeds as high as 10 Gbps, cell edge rate greater than 100 Mbps, and latency of less than 1 msec. To reach these 5G requirements the industry is looking at new spectrum bands in the range up to 100 GHz where there is spectrum availability for wide bandwidth channels. For the development of new 5G systems to operate in bands up to 100 GHz there is a need for accurate radio propagation models which are not addressed by existing channel models developed for bands below 6 GHz. This paper presents a preliminary overview of the 5G channel models for bands up to 100 GHz in indoor offices and shopping malls, derived from extensive measurements across a multitude of bands. These studies have found some extensibility of the existing 3GPP models to the higher frequency bands up to 100 GHz. The measurements indicate that the smaller wavelengths introduce an increased sensitivity of the propagation models to the scale of the environment and show some frequency dependence of the path loss as well as increased occurrence of blockage. Further, the penetration loss is highly dependent on the material and tends to increase with frequency. The small-scale characteristics of the channel such as delay spread and angular spread and the multipath richness is somewhat similar over the frequency range, which is encouraging for extending the existing 3GPP models to the wider frequency range. Further work will be carried out to complete these models, but this paper presents the first steps for an initial basis for the model development.

Patent
26 Feb 2016
TL;DR: In this article, the authors present a receiver configured to receive a first signal from the channel, generate a second signal, and measure the parameter based on a comparison between the first and second signals.
Abstract: Exemplary systems and methods can be provided for measuring a parameter—e.g., channel impulse response and/or power delay profile—of a wideband, millimeter-wave (mmW) channel. The exemplary systems can include a receiver configured to receive a first signal from the channel, generate a second signal, and measure the parameter based on a comparison between the first and second signals; and a controller configured to determine first and second calibration of the system before and after measuring the parameter, and determine a correction for the parameter measurement based on the first and second calibrations. Exemplary methods can also be provided for calibrating a system for measuring the channel parameter. Such methods can be utilized for systems in which the TX and RX devices share a common frequency source and for systems in which the TX and RX devices have individual frequency sources that free-run during channel measurements.

Proceedings ArticleDOI
TL;DR: This work identifies problems with the RMa model used by the 3rd Generation Partnership Project (3GPP) TR 38.900 Release 14, and offers a close-in reference distance model that has improved accuracy, fewer parameters, and better stability as compared with the existing 3GPP RMa path loss model.
Abstract: This paper shows the remarkable distances that can be achieved using millimeter wave communications, and presents a new rural macrocell (RMa) path loss model for millimeter wave frequencies, based on measurements at 73 GHz in rural Virginia. Path loss models are needed to estimate signal coverage and interference for wireless network design, yet little is known about rural propagation at millimeter waves. This work identifies problems with the RMa model used by the 3rd Generation Partnership Project (3GPP) TR 38.900 Release 14, and offers a close-in (CI) reference distance model that has improved accuracy, fewer parameters, and better stability as compared with the existing 3GPP RMa path loss model. The measurements and models presented here are the first to validate rural millimeter wave path loss models.