scispace - formally typeset
Search or ask a question

Showing papers by "Göran Arnqvist published in 2008"


Journal ArticleDOI
TL;DR: It is concluded that coevolution between male ejaculates and female utilization of ejaculate substances has apparently been rapid in this clade of seed beetles and variation in ejaculate composition is the key, both within and across species.
Abstract: When ejaculates are costly to produce, males are expected to allocate their ejaculate resources over successive matings in a manner that optimises their reproductive success. Theory predicts that t ...

58 citations


Journal ArticleDOI
TL;DR: The results show that, in order to gain a relevant understanding of the genetic architecture of fitness, measures of offspring Fitness should be inclusive and should include quantifications of offspring reproductive success, and that the major determinant of offspring fitness is the genetic interaction between parental genomes, as indicated by large amounts of non-additive genetic variance for F1 productivity.
Abstract: Quantifying the amount of standing genetic variation in fitness represents an empirical challenge. Unfortunately, the shortage of detailed studies of the genetic architecture of fitness has hampered progress in several domains of evolutionary biology. One such area is the study of sexual selection. In particular, the evolution of adaptive female choice by indirect genetic benefits relies on the presence of genetic variation for fitness. Female choice by genetic benefits fall broadly into good genes (additive) models and compatibility (non-additive) models where the strength of selection is dictated by the genetic architecture of fitness. To characterize the genetic architecture of fitness, we employed a quantitative genetic design (the diallel cross) in a population of the seed beetle Callosobruchus maculatus, which is known to exhibit post-copulatory female choice. From reciprocal crosses of inbred lines, we assayed egg production, egg-to-adult survival, and lifetime offspring production of the outbred F1 daughters (F1 productivity). We used the bio model to estimate six components of genetic and environmental variance in fitness. We found sizeable additive and non-additive genetic variance in F1 productivity, but lower genetic variance in egg-to-adult survival, which was strongly influenced by maternal and paternal effects. Our results show that, in order to gain a relevant understanding of the genetic architecture of fitness, measures of offspring fitness should be inclusive and should include quantifications of offspring reproductive success. We note that our estimate of additive genetic variance in F1 productivity (CV A = 14%) is sufficient to generate indirect selection on female choice. However, our results also show that the major determinant of offspring fitness is the genetic interaction between parental genomes, as indicated by large amounts of non-additive genetic variance (dominance and/or epistasis) for F1 productivity. We discuss the processes that may maintain additive and non-additive genetic variance for fitness and how these relate to indirect selection for female choice.

52 citations


Journal ArticleDOI
TL;DR: It is concluded that some patterns of correlated evolution are congruent with current theory, whereas some are not and this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade‐offs between ejaculate expenditure and other competing demands and the development of resource acquisition.
Abstract: Sperm competition theory suggests that female remating rate determines the selective regime that dictates the evolution of male ejaculate allocation. To test for correlated evolution between female remating behaviour and male ejaculate traits, we subjected detailed experimental data on female and male reproductive traits in seven-seed beetle species to phylogenetic comparative analyses. The evolution of a larger first ejaculate was positively correlated with the evolution of a more rapid decline in ejaculate size over successive matings. Further, as predicted by theory, an increase in female remating rate correlated with the evolution of larger male testes but smaller ejaculates. However, an increase in female remating was associated with the evolution of a less even allocation of ejaculate resources over successive matings, contrary to classic sperm competition theory. We failed to find any evidence for coevolution between the pattern of male ejaculate allocation and variation in female quality and we conclude that some patterns of correlated evolution are congruent with current theory, whereas some are not. We suggest that this may reflect the fact that much sperm competition theory does not fully incorporate other factors that may affect the evolution of male and female traits, such as trade-offs between ejaculate expenditure and other competing demands and the evolution of resource acquisition.

39 citations


Journal ArticleDOI
TL;DR: The results suggest that evolutionary constraints in the form of intralocus sexual conflict may have been the major generator of the relationship seen between sexual dimorphism and population fitness.
Abstract: The population consequences of sexual selection remain empirically unexplored. Comparative studies, involving extinction risk, have yielded different results as to the effect of sexual selection on population densities make contrasting predictions. Here, we investigate the relationship between sexual dimorphism (SD) and population productivity in the seed beetle Callosobruchus maculatus, using 13 populations that have evolved in isolation. Geometric morphometric methods and image analysis are employed to form integrative measures of sexual dimorphism, composed of variation in weight, size, body shape, and pigmentation. We found a positive relationship between SD and adult fitness (net adult offspring production) across our study populations, but failed to find any association between SD and juvenile fitness (egg-to-adult survival). Several mechanisms may have contributed to the pattern found, and variance in sexual selection regimes across populations, either in female choice for "good genes" or in the magnitude of direct benefits provided by their mates, would tend to produce the pattern seen. However, our results suggest that evolutionary constraints in the form of intralocus sexual conflict may have been the major generator of the relationship seen between SD and population fitness.

36 citations


Journal ArticleDOI
TL;DR: The possible implications of monandry on the evolution of sexually homologous ornaments, with particular consideration of mutual mate choice, are discussed.
Abstract: Despite the benefits of multiple mating to females many mosquitoes appear to be monandrous. Members of the mosquito tribe Sabethini are unique among the mosquitoes for they possess iridescent scales and elaborate ornaments in both sexes. Additionally, this tribe boasts the only reported cases of courtship display within the mosquitoes. Due to these singular traits and behaviors, we predicted that members of this tribe have a different mating system with relatively high female mating rate. We tested this prediction in the ornamented mosquito Sabethes cyaneus. Contrary to our prediction, however, females were monandrous throughout their lifetime and multiple gonotrophic cycles. We discuss the possible implications of monandry on the evolution of sexually homologous ornaments, with particular consideration of mutual mate choice.

20 citations