scispace - formally typeset
Search or ask a question

Showing papers by "Gordon L. Amidon published in 2009"


Journal ArticleDOI
TL;DR: One notable finding of the provisional BCS classification is that the clinical performance of the majority of approved IR oral drug products essential for human health can be assured with an in vitro dissolution test, rather than empirical in vivo human studies.
Abstract: The Biopharmaceutics Classification System (BCS) categorizes drugs into one of four biopharmaceutical classes according to their water solubility and membrane permeability characteristics and broadly allows the prediction of the rate-limiting step in the intestinal absorption process following oral administration. Since its introduction in 1995, the BCS has generated remarkable impact on the global pharmaceutical sciences arena, in drug discovery, development, and regulation, and extensive validation/discussion/extension of the BCS is continuously published in the literature. The BCS has been effectively implanted by drug regulatory agencies around the world in setting bioavailability/bioequivalence standards for immediate-release (IR) oral drug product approval. In this review, we describe the BCS scientific framework and impact on regulatory practice of oral drug products and review the provisional BCS classification of the top drugs on the global market. The Biopharmaceutical Drug Disposition Classification System and its association with the BCS are discussed as well. One notable finding of the provisional BCS classification is that the clinical performance of the majority of approved IR oral drug products essential for human health can be assured with an in vitro dissolution test, rather than empirical in vivo human studies.

360 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the scientific advisability of allowing a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing either diclofenac potassium and diclaminac sodium.

144 citations


Journal ArticleDOI
TL;DR: For these high-solubility low-permeability P-GP substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P- gp plays a minimal role in the proximal intestinal segments due to significant lower P- GP expression levels in this region.
Abstract: The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H2-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP−BL) and the BL−AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased Peff in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs sign...

143 citations



Journal ArticleDOI
TL;DR: In conclusion, efflux transport mediated by MRP2 and BCRP, but not P-gp, shifts sulfasalazine permeability from high to low, thereby enabling its colonic targeting and therapeutic action, the first demonstration of intestinal efflux acting in favor of oral drug delivery.
Abstract: Sulfasalazine is characterized by low intestinal absorption, which essentially enables its colonic targeting and therapeutic action. The mechanisms behind this low absorption have not yet been eluc...

108 citations


Journal ArticleDOI
TL;DR: It was revealed that the combined effect of P-gp and MRP2, but not BCRP, dominates colchicine transepithelial transport, leading to complete coverage of the entire small intestine, and makes the efflux transport dominate the intestinal permeability process.
Abstract: The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from proximal to distal segments, whereas MRP2 decreased from proximal to distal small intestinal regions. Overall, it was revealed that the combined effect of P-gp and MRP2, but not BCRP, dominates colchicine transepithelial transport, leading to complete coverage of the entire small intestine, and makes the efflux transport dominate the intestinal permeability process.

99 citations


Journal ArticleDOI
TL;DR: The substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin is demonstrated.
Abstract: The purpose of this research was to evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. The intrinsic dissolution rates of ketoprofen and indomethacin were experimentally measured using a rotating disk method at 37 °C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin in USP and FaSSIF phosphate buffers are 1.5−3.0 times that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and second on solubil...

91 citations


Journal ArticleDOI
TL;DR: GFJ may augment colchicine oral bioavailability, suggesting inhibition of efflux transport, rather than metabolizing enzyme, in the absence/presence of known P-gp inhibitors.
Abstract: To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate. Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP–BL and BL–AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6′-7′-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum. Colchicine exhibited 20-fold higher BL–AP than AP–BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP–BL permeability was increased and BL–AP was decreased by GFJ in a concentration-dependent manner (IC50 values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6′-7′-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL–AP secretion (IC50 values of 90, 592 and 11.6 μM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability. The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.

87 citations


Journal ArticleDOI
TL;DR: The Triple SPIP model can reduce the number of animals utilized in segmental-dependent permeability research without compromising the quality of the data obtained, as each subject serves as his own control.

87 citations


Journal ArticleDOI
TL;DR: Results provide increased understanding of the underlying mechanisms of ion-pair mediated membrane transport, emphasizing the potential of this approach to enable oral delivery of low-permeability drugs.

50 citations


Journal ArticleDOI
TL;DR: The propylene glycol linker is suggested to be an optimal linker for amino acid prodrugs since it has good chemical stability and is enzymatically hydrolyzed to yield the parent drug.
Abstract: We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy linker were the least stable while prodrugs containing propylene glycol linker were most stable. This work suggests that the propylene glycol linker is an optimal linker for amino acid prodrugs since it has good chemical stability and is enzymatically hydrolyzed to yield the parent drug. This approach can be further extended to other non-amino acid prodrugs and to provide a chemical handle to modify lead molecules containing carboxylic group(s).

Journal ArticleDOI
TL;DR: Comparing the expression profiles of drug‐metabolizing enzymes in the intestine of mouse, rat and human is expected to improve the understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.
Abstract: The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

Journal ArticleDOI
TL;DR: Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug–drug interactions.
Abstract: The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

Journal ArticleDOI
TL;DR: IFN-gamma increases h-PEPT1 expression and permeation of the dipeptide Gly-Sar in Caco-2 monolayers, implying that intestinal absorption of peptides and peptidomimetic drugs may be increased in certain inflammatory conditions.

Journal ArticleDOI
TL;DR: The results of this study suggest that hPEPT1 and hPepT2 are unlikely to contribute to clinically important drug interactions in humans.
Abstract: Intestinal peptide transporters, including hPEPT1, facilitate the absorption of cephalosporins and angiotensin-converting enzyme inhibitors, and have been investigated as a means to improve oral drug absorption. Renal peptide transporters including hPEPT2, may also facilitate renal reabsorption of such compounds. In vitro and animal studies suggest that co-administration of peptidomimetic compounds may alter oral pharmacokinetics, although this has not been well studied in humans. The purpose of this study was to determine whether co-administration of the hPEPT substrates captopril and cephradine alters the oral pharmacokinetics of either agent. Nine healthy male volunteers received a single oral 25-mg dose of captopril, a single oral 500-mg dose of cephradine, or concurrent ingestion of captopril and cephradine in a cross-over manner. Venous blood samples were taken and captopril and cephradine pharmacokinetics were determined using noncompartmental analyses. No significant differences were observed in captopril or cephradine pharmacokinetics when administered together as compared to each agent alone (a marginal decrease in C(max) was observed for both captopril and cephradine during co-administration [5-15%]; however, differences were not statistically significant). The results of our study suggest that hPEPT1 and hPEPT2 are unlikely to contribute to clinically important drug interactions in humans.

Patent
15 Apr 2009
TL;DR: In this article, a new class of neuramidase inhibitor prodrugs is provided characterized by a prodrug moiety of a carboxyl group modified to form a carbonyl ethoxy amino acid, a caroencoxy dipeptide or a carboencoupled tripeptides.
Abstract: A new class of neuramidase inhibitor prodrugs is provided characterized by a prodrug moiety of a carboxyl group modified to form a carbonyl ethoxy amino acid, a carbonyl ethoxy dipeptide or a carbonyl ethoxy tripeptide, a guanidine group modified to form a carbonyl ethoxy amino acid, a carbonyl ethoxy dipeptide, a carbonyl ethoxy tripeptide; a primary alcohol modified to form an esterified single amino acid, dipeptide or tripeptide of zanavimir of the unaltered therapeutic agent. Exemplary therapeutic agents so modified to form prodrugs include zanavimir, oseltamivir and peramivir. The prodrug has increased oral bioavailability relative to the unaltered neuraminidase inhibitor and is effective in the inhibition of viral infections involving neuraminidase in the viral reproductive cycle.

Journal ArticleDOI
TL;DR: Intestinal absorption of the dipeptide Gly-Sar is preserved 24 hours following thermal injury in rats and PEPT1 expression and peptide absorption are preserved following treatment with TNF-alpha, IL-6, and IL-10 in Caco-2 monolayers, implying that intestinal dipeptic absorption may be preserved during burn injury.
Abstract: Background: Intestinal barrier function is impaired during thermal injury; however, the effects of thermal injury on the absorption of dietary peptides are not well characterized. The purpose of this study was to determine the impact of thermal injury on dipeptide absorption in rats and to describe the influence of inflammatory cytokines on the expression of the oligopeptide transporter PEPT1 and dipeptide permeability in cultured intestinal cells (Caco-2 cells). Methods: Sprague Dawley rats were assigned to 30% body surface area burn (n = 7) or sham (n = 8) groups. Twenty-four hours following burn/sham, the proximal jejunum was cannulated. The jejunal segment was perfused with buffer containing the dipeptide glycylsarcosine (Gly-Sar), and intestinal permeability (Peff) was calculated. For in vitro experiments, Caco-2 cells were grown on permeable supports and treated with tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 (10 ng/mL) alone and in combination for 48 hours. The effective apical-to...