scispace - formally typeset
Search or ask a question

Showing papers by "J. J. Quenby published in 2008"


Journal ArticleDOI
TL;DR: In this paper, the authors presented a systematic study of cosmic ray (CR) particle acceleration by relativistic shocks, in particular concerning the dependence on bulk Lorentz factor and the angle between the magnetic field and the shock flow.
Abstract: Aims. The flux of ultra high energy cosmic rays (UHECRs) at E > 10 18.5 eV is believed to arise in plasma shock environments in extragalactic sources. In this paper, we present a systematic study of cosmic ray (CR) particle acceleration by relativistic shocks, in particular concerning the dependence on bulk Lorentz factor and the angle between the magnetic field and the shock flow. The contribution to the observed diffuse CR spectrum provided by the accelerated particles is discussed. Methods. For the first time, Monte Carlo simulations for super- and subluminal shocks are extended to boost factors up to Γ= 1000 and systematically compared. The source spectra derived are translated into the expected diffuse proton flux from astrophysical sources by folding the spectra with the spatial distribution of active galactic nuclei (AGN) and gamma ray bursts (GRBs). Results of these predictions are compared with UHECR data. Results. While superluminal shocks are shown to be inefficient at providing acceleration to the highest energies (E > 10 18.5 eV), subluminal shocks may provide particles up to 10 21 eV, limited only by the Hillas-criterion. In the subluminal case, we find that mildly-relativistic shocks, thought to occur in jets of AGN (Γ ∼ 10−30), yield energy spectra of dN/dE ∼ E −2 . Highly relativistic shocks expected in GRBs (100 < Γ < 1000), on the other hand, produce spectra as flat as ∼E −1.0 above 10 9.5 GeV. The model results are compared with the measured flux of CRs at the highest energies and it is shown that, while AGN spectra provide an excellent fit, GRB spectra are too flat to explain the observed flux. The first evidence of a correlation between the CR flux above 5.7 × 10 10 GeV and the distribution of AGN provided by Auger are explained by our model. Although GRBs are excluded as the principle origin of UHECRs, neutrino production is expected in these sources either in mildly or highly relativistic shocks. In particular, superluminal shocks in GRBs may be observable via neutrino and photon fluxes, rather than as protons.

37 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined the temporal history of integral galactic cosmic ray (GCR) fluence (≥100 MeV) measured by the high-sensitivity telescope (HIST) aboard the Polar spacecraft, along with the solar wind magnetic field and plasma data from the ACE spacecraft during a 40-day period encompassing the 25 September 1998 Forbush decrease.
Abstract: [1] Energetic galactic cosmic ray (GCR) particles, arriving within the solar system, are modulated by the overall interplanetary field carried in the solar wind. Localized disturbances related to solar activity cause further reduction in intensity, the largest being Forbush decreases in which fluxes can fall ∼20% over a few days. Understanding Forbush decreases leads to a better understanding of the magnetic field structure related to shock waves and fast streams originating at the Sun since the propagation characteristics of the GCR probe much larger regions of space than do individual spacecraft instruments. We examined the temporal history of the integral GCR fluence (≥100 MeV) measured by the high-sensitivity telescope (HIST) aboard the Polar spacecraft, along with the solar wind magnetic field and plasma data from the ACE spacecraft during a 40-day period encompassing the 25 September 1998 Forbush decrease. We also examined the Forbush and (energetic storm particles) ESP event on 28 October 2003. It is the use of HIST in a high-counting-rate integral mode that allows previously poorly seen, short-scale depressions in the GCR fluxes to be observed, adding crucial information on the origin of GCR modulation. Variability on time scales within the frequency range 0.001–1.0 mHz is detected. This paper concentrates on investigating four simple models for explaining short-term reductions in the GCR intensity of both small and large amplitude. Specifically, these models are a local increase in magnetic scattering power, the passage of a shock discontinuity, and the passage of a tangential discontinuity or magnetic rope in the solar wind plasma. Analysis of the short-scale GCR depressions during a test period in September through October 1998 shows that they are not correlated with changes in magnetic scattering power or fluctuations in solar wind speed or plasma density. However, magnetic field and plasma data during the test period of Forbush decrease strongly suggest the presence of an interplanetary coronal mass ejection (ICME). Use of a non-force-free magnetic rope model in conjunction with the energetic particle data allows modeling of the geometry of the ICME in terms of a magnetic cloud topology. It is only this cloud configuration that allows a satisfactory explanation of the magnitude of the Forbush event of 25 September 1998. Calculations made during the test period point to short-scale GCR depressions being caused by either small-scale magnetic flux rope structures or possibly tangential discontinuities in the solar wind.

17 citations


Journal ArticleDOI
TL;DR: The data acquisition system used to record the data from ZEPLIN II and the reduction procedures which parameterise the data for subsequent analysis are described.
Abstract: ZEPLIN II is a two-phase (liquid/gas) xenon dark matter detector searching for WIMP-nucleon interactions. In this paper we describe the data acquisition system used to record the data from ZEPLIN II and the reduction procedures which parameterise the data for subsequent analysis.

10 citations