scispace - formally typeset
Search or ask a question

Showing papers by "Jane Fridlyand published in 2009"


Journal ArticleDOI
TL;DR: Metaplastic breast cancers (MBCs) are aggressive, chemoresistant tumors characterized by lineage plasticity as discussed by the authors, and they have unique DNA copy number aberrations compared with common breast cancers.
Abstract: Metaplastic breast cancers (MBC) are aggressive, chemoresistant tumors characterized by lineage plasticity. To advance understanding of their pathogenesis and relatedness to other breast cancer subtypes, 28 MBCs were compared with common breast cancers using comparative genomic hybridization, transcriptional profiling, and reverse-phase protein arrays and by sequencing for common breast cancer mutations. MBCs showed unique DNA copy number aberrations compared with common breast cancers. PIK3CA mutations were detected in 9 of 19 MBCs (47.4%) versus 80 of 232 hormone receptor-positive cancers (34.5%; P = 0.32), 17 of 75 HER-2-positive samples (22.7%; P = 0.04), 20 of 240 basal-like cancers (8.3%; P < 0.0001), and 0 of 14 claudin-low tumors (P = 0.004). Of 7 phosphatidylinositol 3-kinase/AKT pathway phosphorylation sites, 6 were more highly phosphorylated in MBCs than in other breast tumor subtypes. The majority of MBCs displayed mRNA profiles different from those of the most common, including basal-like cancers. By transcriptional profiling, MBCs and the recently identified claudin-low breast cancer subset constitute related receptor-negative subgroups characterized by low expression of GATA3-regulated genes and of genes responsible for cell-cell adhesion with enrichment for markers linked to stem cell function and epithelial-to-mesenchymal transition (EMT). In contrast to other breast cancers, claudin-low tumors and most MBCs showed a significant similarity to a "tumorigenic" signature defined using CD44(+)/CD24(-) breast tumor-initiating stem cell-like cells. MBCs and claudin-low tumors are thus enriched in EMT and stem cell-like features, and may arise from an earlier, more chemoresistant breast epithelial precursor than basal-like or luminal cancers. PIK3CA mutations, EMT, and stem cell-like characteristics likely contribute to the poor outcomes of MBC and suggest novel therapeutic targets.

822 citations


Journal ArticleDOI
30 Apr 2009-Oncogene
TL;DR: Observations highlight the complexity and functional consequences of the genomic rearrangements that occur in these breast cancer amplicons, including transcriptional cross-talk between genes in the 8p and 11q Amplicons, as well as their cooperation with major pathways of tumorigenesis.
Abstract: Co-amplification at chromosomes 8p11-8p12 and 11q12-11q14 occurs often in breast tumors, suggesting possible cooperation between genes in these regions in oncogenesis. We used high-resolution array comparative genomic hybridization (array CGH) to map the minimal amplified regions. The 8p and 11q amplicons are complex and consist of at least four amplicon cores at each site. Candidate oncogenes mapping to these regions were identified by combining copy number and RNA and protein expression analyses. These studies also suggested that CCND1 at 11q13 induced expression of ZNF703 mapping at 8p12, which was subsequently shown to be mediated by the Rb/E2F pathway. Nine candidate oncogenes from 8p12 and four from 11q13 were further evaluated for oncogenic function. None of the genes individually promoted colony formation in soft agar or collaborated with each other functionally. On the other hand, FGFR1 and DDHD2 at 8p12 cooperated functionally with MYC, whereas CCND1 and ZNF703 cooperated with a dominant negative form of TP53. These observations highlight the complexity and functional consequences of the genomic rearrangements that occur in these breast cancer amplicons, including transcriptional cross-talk between genes in the 8p and 11q amplicons, as well as their cooperation with major pathways of tumorigenesis.

108 citations