scispace - formally typeset
Search or ask a question

Showing papers by "Jennifer L. Moran published in 2007"


Journal ArticleDOI
TL;DR: The mummy mutant provides a mouse model for LOX-mediated NCIE and is the first described mouse mutant affecting epidermal barrier formation identified by forward genetics.

55 citations


Journal ArticleDOI
TL;DR: The experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion, and rescue of the lethal phenotype depends on the parental origin of the R mod1 alleles; transmission through the dam leads to rescue, while transmission throughThe sire has no effect.
Abstract: When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.

9 citations


Journal ArticleDOI
TL;DR: The power of using ENU mutagenesis screens to generate new animal models of human disease, and expands the spectrum of EDN3 mutant alleles, is demonstrated.
Abstract: A line of mutant mice (114-CH19) exhibiting white spotting and preweaning lethality was identified during an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. The trait segregated as a semidominant bellyspot with reduced penetrance. Homozygous mutant mice showed preweaning lethality, and exhibited white spotting over the majority of the body surface, with pigmented patches remaining around the pinnae, eyes and tail. Linkage analysis localized 114-CH19 on mouse chromosome 2, suggesting endothelin 3 (Edn3) as a candidate gene. Sequence analysis of Edn3 identified a G > A transversion that encodes an arginine to histidine substitution (R96H). This mutation is predicted to disrupt furin-mediated proteolytic cleavage of pro-endothelin that is necessary to form biologically active EDN3. This mutation is novel among human and mouse EDN3 mutants, is the first reported EDN3 ENU mutant, and is the second reported EDN3 point mutation. This study demonstrates the power of using ENU mutagenesis screens to generate new animal models of human disease, and expands the spectrum of EDN3 mutant alleles.

8 citations


Journal ArticleDOI
01 Jul 2007-Genesis
TL;DR: This study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination and reports the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57bl/ 6J background.
Abstract: In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

2 citations