scispace - formally typeset
Search or ask a question

Showing papers by "Jens K. Nørskov published in 1984"


Journal ArticleDOI
TL;DR: In this paper, extensive calculations of the ground state properties of hydrogen chemisorbed on transition metal surfaces are performed using the effective medium theory, and the results for the chemical energy on all the 3D, 4D and 5D metals presented are in good agreement with experiment.

310 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the trap-binding enthalpies trapped in deuterium in fee Ni using ion-beam-analysis techniques and showed that D is delocalized over the entire vacancy, with a maximum density in the region between the vacancy and the nearest octahedral site.
Abstract: The trapping of ion-implanted deuterium (D) in fee Ni is investigated by ion-beam-analysis techniques. Two lattice-defect traps have been observed with trap-binding enthalpies 0.24 eV and 0.43 eV referred to an untrapped solution site. The lattice location of D when associated with the defect traps is obtained by the channeling technique following anneals at various temperatures. The detailed analysis of these channeling data is based on a comparison with multirow continuum-model calculations of the angular yields for different D positions. These channeling calculations are extended by introducing a parameter δψ which encompasses the spreading in transverse energy caused by effects such as, for example, electron and nuclear multiple scattering. Also new and improved theoretical calculations based on the effective medium scheme of the equilibrium positions of H isotopes at defects, especially vacancies, are presented. The calculations show that D is delocalized over the entire vacancy, with a maximum density in the region between the vacancy and the nearest octahedral site. This picture is supported by the finding that the channeling data for D trapped to vacancies cannot be interpreted in terms of a single lattice site, and preference in site occupancy is found for D displaced from the vacancy towards the octahedral and (smaller) tetrahedral sites, respectively.

22 citations