scispace - formally typeset
Search or ask a question

Showing papers by "Jesus F. Salazar-Gonzalez published in 2022"


Journal ArticleDOI
01 Feb 2022-Viruses
TL;DR: The high transmission rate of unique inter-subtype recombinants is striking and emphasizes the extraordinary challenge for vaccine design and, in particular, for the highly variable and recombinogenic envelope gene, which is targeted by rational designs aimed to elicit broadly neutralizing antibodies.
Abstract: Detailed characterization of transmitted HIV-1 variants in Uganda is fundamentally important to inform vaccine design, yet studies on the transmitted full-length strains of subtype D viruses are limited. Here, we amplified single genomes and characterized viruses, some of which were previously classified as subtype D by sub-genomic pol sequencing that were transmitted in Uganda between December 2006 to June 2011. Analysis of 5′ and 3′ half genome sequences showed 73% (19/26) of infections involved single virus transmissions, whereas 27% (7/26) of infections involved multiple variant transmissions based on predictions of a model of random virus evolution. Subtype analysis of inferred transmitted/founder viruses showed a high transmission rate of inter-subtype recombinants (69%, 20/29) involving mainly A1/D, while pure subtype D variants accounted for one-third of infections (31%, 9/29). Recombination patterns included a predominance of subtype D in the gag/pol region and a highly recombinogenic envelope gene. The signal peptide-C1 region and gp41 transmembrane domain (Tat2/Rev2 flanking region) were hotspots for A1/D recombination events. Analysis of a panel of 14 transmitted/founder molecular clones showed no difference in replication capacity between subtype D viruses (n = 3) and inter-subtype mosaic recombinants (n = 11). However, individuals infected with high replication capacity viruses had a faster CD4 T cell loss. The high transmission rate of unique inter-subtype recombinants is striking and emphasizes the extraordinary challenge for vaccine design and, in particular, for the highly variable and recombinogenic envelope gene, which is targeted by rational designs aimed to elicit broadly neutralizing antibodies.

3 citations


Journal ArticleDOI
TL;DR: In this paper , the authors found that increased production of cytokines in early HIV infection may trigger a disruption of the immune environment and contribute to pathogenic mechanisms underlying the accelerated disease progression seen in individuals infected with HIV-1 subtype D in Uganda.
Abstract: The observation that HIV-1 subtype D progresses faster to disease than subtype A prompted us to examine cytokine levels early after infection within the predominant viral subtypes that circulate in Uganda and address the following research questions: (1) Do cytokine levels vary between subtypes A1 and D? (2) Do cytokine profiles correlate with disease outcomes? To address these questions, HIV-1 subtypes were determined by population sequencing of the HIV-1 pol gene and 37 plasma cytokine concentrations were evaluated using V-Plex kits on Meso Scale Discovery platform in 65 recent sero-converters. HIV-1 subtype D (pol) infections exhibited significantly higher median plasma concentrations of IL-5, IL-16, IL-1α, IL-7, IL-17A, CCL11 (Eotaxin-1), CXCL10 (IP-10), CCL13 (MCP-4) and VEGF-D compared to subtype A1 (pol) infections. We also found that IL-12/23p40 and IL-1α were associated with faster CD4+T cell count decline, while bFGF was associated with maintenance of CD4+ counts above 350 cells/microliter. Our results suggest that increased production of cytokines in early HIV infection may trigger a disruption of the immune environment and contribute to pathogenic mechanisms underlying the accelerated disease progression seen in individuals infected with HIV-1 subtype D in Uganda.

1 citations


Journal ArticleDOI
29 Jul 2022-Viruses
TL;DR: The identification of SEARCH-incident, within-community transmissions reveals the role of unsuppressed individuals in sustaining the epidemic in both arms of a UTT trial setting, and highlights the need to improve delivery and adherence to up-to-date ART recommendations, to halt HIV-1 transmission.
Abstract: The Sustainable East Africa Research in Community Health (SEARCH) trial was a universal test-and-treat (UTT) trial in rural Uganda and Kenya, aiming to lower regional HIV-1 incidence. Here, we quantify breakthrough HIV-1 transmissions occurring during the trial from population-based, dried blood spot samples. Between 2013 and 2017, we obtained 549 gag and 488 pol HIV-1 consensus sequences from 745 participants: 469 participants infected prior to trial commencement and 276 SEARCH-incident infections. Putative transmission clusters, with a 1.5% pairwise genetic distance threshold, were inferred from maximum likelihood phylogenies; clusters arising after the start of SEARCH were identified with Bayesian time-calibrated phylogenies. Our phylodynamic approach identified nine clusters arising after the SEARCH start date: eight pairs and one triplet, representing mostly opposite-gender linked (6/9), within-community transmissions (7/9). Two clusters contained individuals with non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance, both linked to intervention communities. The identification of SEARCH-incident, within-community transmissions reveals the role of unsuppressed individuals in sustaining the epidemic in both arms of a UTT trial setting. The presence of transmitted NNRTI resistance, implying treatment failure to the efavirenz-based antiretroviral therapy (ART) used during SEARCH, highlights the need to improve delivery and adherence to up-to-date ART recommendations, to halt HIV-1 transmission.