scispace - formally typeset
Search or ask a question

Showing papers by "Jiawei Han published in 2019"


Posted Content
TL;DR: This work identifies a problem of the adaptive learning rate, suggests warmup works as a variance reduction technique, and proposes RAdam, a new variant of Adam, by introducing a term to rectify the variance of theadaptive learning rate.
Abstract: The learning rate warmup heuristic achieves remarkable success in stabilizing training, accelerating convergence and improving generalization for adaptive stochastic optimization algorithms like RMSprop and Adam. Here, we study its mechanism in details. Pursuing the theory behind warmup, we identify a problem of the adaptive learning rate (i.e., it has problematically large variance in the early stage), suggest warmup works as a variance reduction technique, and provide both empirical and theoretical evidence to verify our hypothesis. We further propose RAdam, a new variant of Adam, by introducing a term to rectify the variance of the adaptive learning rate. Extensive experimental results on image classification, language modeling, and neural machine translation verify our intuition and demonstrate the effectiveness and robustness of our proposed method. All implementations are available at: this https URL.

938 citations


Journal ArticleDOI
TL;DR: A multi-task learning framework for BioNER is proposed to collectively use the training data of different types of entities and improve the performance on each of them, achieving substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models.
Abstract: Motivation State-of-the-art biomedical named entity recognition (BioNER) systems often require handcrafted features specific to each entity type, such as genes, chemicals and diseases. Although recent studies explored using neural network models for BioNER to free experts from manual feature engineering, the performance remains limited by the available training data for each entity type. Results We propose a multi-task learning framework for BioNER to collectively use the training data of different types of entities and improve the performance on each of them. In experiments on 15 benchmark BioNER datasets, our multi-task model achieves substantially better performance compared with state-of-the-art BioNER systems and baseline neural sequence labeling models. Further analysis shows that the large performance gains come from sharing character- and word-level information among relevant biomedical entities across differently labeled corpora. Availability and implementation Our source code is available at https://github.com/yuzhimanhua/lm-lstm-crf. Supplementary information Supplementary data are available at Bioinformatics online.

182 citations


Posted Content
TL;DR: This work presents a simple yet effective unsupervised network embedding method for attributed multiplex network called DMGI, inspired by Deep Graph Infomax (DGI) that maximizes the mutual information between local patches of a graph, and the global representation of the entire graph.
Abstract: Nodes in a multiplex network are connected by multiple types of relations. However, most existing network embedding methods assume that only a single type of relation exists between nodes. Even for those that consider the multiplexity of a network, they overlook node attributes, resort to node labels for training, and fail to model the global properties of a graph. We present a simple yet effective unsupervised network embedding method for attributed multiplex network called DMGI, inspired by Deep Graph Infomax (DGI) that maximizes the mutual information between local patches of a graph, and the global representation of the entire graph. We devise a systematic way to jointly integrate the node embeddings from multiple graphs by introducing 1) the consensus regularization framework that minimizes the disagreements among the relation-type specific node embeddings, and 2) the universal discriminator that discriminates true samples regardless of the relation types. We also show that the attention mechanism infers the importance of each relation type, and thus can be useful for filtering unnecessary relation types as a preprocessing step. Extensive experiments on various downstream tasks demonstrate that DMGI outperforms the state-of-the-art methods, even though DMGI is fully unsupervised.

86 citations


Proceedings ArticleDOI
01 Nov 2019
TL;DR: This study dives deep into one of the widely-adopted NER benchmark datasets, CoNLL03 NER, and proposes a simple yet effective framework, CrossWeigh, to handle label mistakes during NER model training.
Abstract: Everyone makes mistakes. So do human annotators when curating labels for named entity recognition (NER). Such label mistakes might hurt model training and interfere model comparison. In this study, we dive deep into one of the widely-adopted NER benchmark datasets, CoNLL03 NER. We are able to identify label mistakes in about 5.38% test sentences, which is a significant ratio considering that the state-of-the-art test F1 score is already around 93%. Therefore, we manually correct these label mistakes and form a cleaner test set. Our re-evaluation of popular models on this corrected test set leads to more accurate assessments, compared to those on the original test set. More importantly, we propose a simple yet effective framework, CrossWeigh, to handle label mistakes during NER model training. Specifically, it partitions the training data into several folds and train independent NER models to identify potential mistakes in each fold. Then it adjusts the weights of training data accordingly to train the final NER model. Extensive experiments demonstrate significant improvements of plugging various NER models into our proposed framework on three datasets. All implementations and corrected test set are available at our Github repo https://github.com/ZihanWangKi/CrossWeigh.

65 citations


Proceedings Article
04 Nov 2019
TL;DR: The authors proposed a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned, and developed an efficient optimization algorithm with convergence guarantee based on Riemannian optimization.
Abstract: Unsupervised text embedding has shown great power in a wide range of NLP tasks. While text embeddings are typically learned in the Euclidean space, directional similarity is often more effective in tasks such as word similarity and document clustering, which creates a gap between the training stage and usage stage of text embedding. To close this gap, we propose a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned. To learn text embeddings in the spherical space, we develop an efficient optimization algorithm with convergence guarantee based on Riemannian optimization. Our model enjoys high efficiency and achieves state-of-the-art performances on various text embedding tasks including word similarity and document clustering.

62 citations


Proceedings ArticleDOI
01 Jun 2019
TL;DR: A novel knowledge base (KB)-driven tree-structured long short-term memory networks (Tree-LSTM) framework is proposed, incorporating two new types of features: dependency structures to capture wide contexts and entity properties from external ontologies via entity linking.
Abstract: Event extraction for the biomedical domain is more challenging than that in the general news domain since it requires broader acquisition of domain-specific knowledge and deeper understanding of complex contexts. To better encode contextual information and external background knowledge, we propose a novel knowledge base (KB)-driven tree-structured long short-term memory networks (Tree-LSTM) framework, incorporating two new types of features: (1) dependency structures to capture wide contexts; (2) entity properties (types and category descriptions) from external ontologies via entity linking. We evaluate our approach on the BioNLP shared task with Genia dataset and achieve a new state-of-the-art result. In addition, both quantitative and qualitative studies demonstrate the advancement of the Tree-LSTM and the external knowledge representation for biomedical event extraction.

59 citations


Posted Content
TL;DR: This work proposes a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned in the spherical space and develops an efficient optimization algorithm with convergence guarantee based on Riemannian optimization.
Abstract: Unsupervised text embedding has shown great power in a wide range of NLP tasks. While text embeddings are typically learned in the Euclidean space, directional similarity is often more effective in tasks such as word similarity and document clustering, which creates a gap between the training stage and usage stage of text embedding. To close this gap, we propose a spherical generative model based on which unsupervised word and paragraph embeddings are jointly learned. To learn text embeddings in the spherical space, we develop an efficient optimization algorithm with convergence guarantee based on Riemannian optimization. Our model enjoys high efficiency and achieves state-of-the-art performances on various text embedding tasks including word similarity and document clustering.

56 citations


Journal ArticleDOI
17 Jul 2019
TL;DR: In this article, a weakly-supervised neural method for hierarchical text classification is proposed, which does not require a large amount of training data but requires only easy-to-provide weak supervision signals such as a few class-related documents or keywords.
Abstract: Hierarchical text classification, which aims to classify text documents into a given hierarchy, is an important task in many real-world applications. Recently, deep neural models are gaining increasing popularity for text classification due to their expressive power and minimum requirement for feature engineering. However, applying deep neural networks for hierarchical text classification remains challenging, because they heavily rely on a large amount of training data and meanwhile cannot easily determine appropriate levels of documents in the hierarchical setting. In this paper, we propose a weakly-supervised neural method for hierarchical text classification. Our method does not require a large amount of training data but requires only easy-to-provide weak supervision signals such as a few class-related documents or keywords. Our method effectively leverages such weak supervision signals to generate pseudo documents for model pre-training, and then performs self-training on real unlabeled data to iteratively refine the model. During the training process, our model features a hierarchical neural structure, which mimics the given hierarchy and is capable of determining the proper levels for documents with a blocking mechanism. Experiments on three datasets from different domains demonstrate the efficacy of our method compared with a comprehensive set of baselines.

53 citations


Proceedings ArticleDOI
01 Nov 2019
TL;DR: The HiGitClass framework is proposed, comprising of three modules: heterogeneous information network embedding; keyword enrichment; topic modeling and pseudo document generation, which is superior to existing weakly-supervised and dataless hierarchical classification methods, especially in its ability to integrate both structured and unstructured data for repository classification.
Abstract: GitHub has become an important platform for code sharing and scientific exchange. With the massive number of repositories available, there is a pressing need for topic-based search. Even though the topic label functionality has been introduced, the majority of GitHub repositories do not have any labels, impeding the utility of search and topic-based analysis. This work targets the automatic repository classification problem as keyword-driven hierarchical classification. Specifically, users only need to provide a label hierarchy with keywords to supply as supervision. This setting is flexible, adaptive to the users' needs, accounts for the different granularity of topic labels and requires minimal human effort. We identify three key challenges of this problem, namely (1) the presence of multi-modal signals; (2) supervision scarcity and bias; (3) supervision format mismatch. In recognition of these challenges, we propose the HiGitClass framework, comprising of three modules: heterogeneous information network embedding; keyword enrichment; topic modeling and pseudo document generation. Experimental results on two GitHub repository collections confirm that HiGitClass is superior to existing weakly-supervised and dataless hierarchical classification methods, especially in its ability to integrate both structured and unstructured data for repository classification. Code and datasets related to this paper are available at https://github.com/yuzhimanhua/HiGitClass.

41 citations


Proceedings ArticleDOI
01 Nov 2019
TL;DR: HiLAP as discussed by the authors proposes to learn a label assignment policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process and explores the hierarchy during both training and inference time in a consistent manner.
Abstract: While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. Data and code can be found at https://github.com/morningmoni/HiLAP.

36 citations


Proceedings ArticleDOI
TL;DR: CatE is developed, a novel category-name guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discrim inative embedding space and discover category representative terms in an iterative manner.
Abstract: Mining a set of meaningful and distinctive topics automatically from massive text corpora has broad applications. Existing topic models, however, typically work in a purely unsupervised way, which often generate topics that do not fit users' particular needs and yield suboptimal performance on downstream tasks. We propose a new task, discriminative topic mining, which leverages a set of user-provided category names to mine discriminative topics from text corpora. This new task not only helps a user understand clearly and distinctively the topics he/she is most interested in, but also benefits directly keyword-driven classification tasks. We develop CatE, a novel category-name guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discriminative embedding space and discover category representative terms in an iterative manner. We conduct a comprehensive set of experiments to show that CatE mines high-quality set of topics guided by category names only, and benefits a variety of downstream applications including weakly-supervised classification and lexical entailment direction identification.

Proceedings ArticleDOI
TL;DR: The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions and outperforms state-of-the-art HTC methods by a large margin.
Abstract: While existing hierarchical text classification (HTC) methods attempt to capture label hierarchies for model training, they either make local decisions regarding each label or completely ignore the hierarchy information during inference. To solve the mismatch between training and inference as well as modeling label dependencies in a more principled way, we formulate HTC as a Markov decision process and propose to learn a Label Assignment Policy via deep reinforcement learning to determine where to place an object and when to stop the assignment process. The proposed method, HiLAP, explores the hierarchy during both training and inference time in a consistent manner and makes inter-dependent decisions. As a general framework, HiLAP can incorporate different neural encoders as base models for end-to-end training. Experiments on five public datasets and four base models show that HiLAP yields an average improvement of 33.4% in Macro-F1 over flat classifiers and outperforms state-of-the-art HTC methods by a large margin. Data and code can be found at this https URL.

Proceedings ArticleDOI
13 May 2019
TL;DR: A STFNet is proposed, which integrates a widely-used time-frequency analysis method, the Short-Time Fourier Transform, into data processing to learn features directly in the frequency domain, where the physics of underlying phenomena leave better footprints.
Abstract: Recent advances in deep learning motivate the use of deep neural networks in Internet-of-Things (IoT) applications. These networks are modelled after signal processing in the human brain, thereby leading to significant advantages at perceptual tasks such as vision and speech recognition. IoT applications, however, often measure physical phenomena, where the underlying physics (such as inertia, wireless signal propagation, or the natural frequency of oscillation) are fundamentally a function of signal frequencies, offering better features in the frequency domain. This observation leads to a fundamental question: For IoT applications, can one develop a new brand of neural network structures that synthesize features inspired not only by the biology of human perception but also by the fundamental nature of physics? Hence, in this paper, instead of using conventional building blocks (e.g., convolutional and recurrent layers), we propose a new foundational neural network building block, the Short-Time Fourier Neural Network (STFNet). It integrates a widely-used time-frequency analysis method, the Short-Time Fourier Transform, into data processing to learn features directly in the frequency domain, where the physics of underlying phenomena leave better footprints. STFNets bring additional flexibility to time-frequency analysis by offering novel nonlinear learnable operations that are spectral-compatible. Moreover, STFNets show that transforming signals to a domain that is more connected to the underlying physics greatly simplifies the learning process. We demonstrate the effectiveness of STFNets with extensive experiments on a wide range of sensing inputs, including motion sensors, WiFi, ultrasound, and visible light. STFNets significantly outperform the state-of-the-art deep learning models in all experiments. A STFNet, therefore, demonstrates superior capability as the fundamental building block of deep neural networks for IoT applications for various sensor inputs 1.

Posted Content
TL;DR: This work proposes an embedding compression method of autoencoder with l2,1-loss, which finds the most informative meta-graphs and embeddings in an end-to-end unsupervised manner and suggests a unified workflow to close the gap between the authors' meta- graph assessment and combination methods.
Abstract: In this work, we propose to study the utility of different meta-graphs, as well as how to simultaneously leverage multiple meta-graphs for HIN embedding in an unsupervised manner. Motivated by prolific research on homogeneous networks, especially spectral graph theory, we firstly conduct a systematic empirical study on the spectrum and embedding quality of different meta-graphs on multiple HINs, which leads to an efficient method of meta-graph assessment. It also helps us to gain valuable insight into the higher-order organization of HINs and indicates a practical way of selecting useful embedding dimensions. Further, we explore the challenges of combining multiple meta-graphs to capture the multi-dimensional semantics in HIN through reasoning from mathematical geometry and arrive at an embedding compression method of autoencoder with $\ell_{2,1}$-loss, which finds the most informative meta-graphs and embeddings in an end-to-end unsupervised manner. Finally, empirical analysis suggests a unified workflow to close the gap between our meta-graph assessment and combination methods. To the best of our knowledge, this is the first research effort to provide rich theoretical and empirical analyses on the utility of meta-graphs and their combinations, especially regarding HIN embedding. Extensive experimental comparisons with various state-of-the-art neural network based embedding methods on multiple real-world HINs demonstrate the effectiveness and efficiency of our framework in finding useful meta-graphs and generating high-quality HIN embeddings.

Posted Content
TL;DR: Zhang et al. as discussed by the authors developed a systematic two-step framework for interpretable new user clustering and churn prediction, based on the intuition that proper clustering can help understand and predict user churn.
Abstract: As online platforms are striving to get more users, a critical challenge is user churn, which is especially concerning for new users. In this paper, by taking the anonymous large-scale real-world data from Snapchat as an example, we develop \textit{ClusChurn}, a systematic two-step framework for interpretable new user clustering and churn prediction, based on the intuition that proper user clustering can help understand and predict user churn. Therefore, \textit{ClusChurn} firstly groups new users into interpretable typical clusters, based on their activities on the platform and ego-network structures. Then we design a novel deep learning pipeline based on LSTM and attention to accurately predict user churn with very limited initial behavior data, by leveraging the correlations among users' multi-dimensional activities and the underlying user types. \textit{ClusChurn} is also able to predict user types, which enables rapid reactions to different types of user churn. Extensive data analysis and experiments show that \textit{ClusChurn} provides valuable insight into user behaviors, and achieves state-of-the-art churn prediction performance. The whole framework is deployed as a data analysis pipeline, delivering real-time data analysis and prediction results to multiple relevant teams for business intelligence uses. It is also general enough to be readily adopted by any online systems with user behavior data.

Proceedings ArticleDOI
01 Nov 2019
TL;DR: Experimental results show that AutoBioNER achieves the best performance among the methods that only use dictionaries with no additional human effort on BioNER benchmark datasets, and it is demonstrated that the dictionary expansion step plays an important role in the great performances.
Abstract: State-of-the-art biomedical named entity recognition (BioNER) systems apply supervised machine learning models (i.e., relying on human effort for training data annotation) which are not easy to be generalized to new entity types and datasets. We propose a distantly supervised approach, AutoBioNER, that automatically recognizes biomedical entities from massive corpora with user-input dictionaries. AutoBioNER does not need any human annotated data. It relies on incomplete entity dictionaries to provide seeds for each entity type and performs a novel entity set expansion step for corpus-level new entity recognition and dictionary completion. The expanded dictionaries are used as distant supervision to train a neural model for BioNER. Experimental results show that AutoBioNER achieves the best performance among the methods that only use dictionaries with no additional human effort on BioNER benchmark datasets. It is also demonstrated that the dictionary expansion step plays an important role in the great performances.

Proceedings ArticleDOI
01 Jul 2019
TL;DR: A novel reliability-aware name tagging model that is able to dynamically select and compose features such as word embedding and character-level representation using gating mechanisms and improves the performance for most genre pairs and obtains up to 5% absolute F-score gain.
Abstract: Word embeddings are widely used on a variety of tasks and can substantially improve the performance. However, their quality is not consistent throughout the vocabulary due to the long-tail distribution of word frequency. Without sufficient contexts, rare word embeddings are usually less reliable than those of common words. However, current models typically trust all word embeddings equally regardless of their reliability and thus may introduce noise and hurt the performance. Since names often contain rare and uncommon words, this problem is particularly critical for name tagging. In this paper, we propose a novel reliability-aware name tagging model to tackle this issue. We design a set of word frequency-based reliability signals to indicate the quality of each word embedding. Guided by the reliability signals, the model is able to dynamically select and compose features such as word embedding and character-level representation using gating mechanisms. For example, if an input word is rare, the model relies less on its word embedding and assigns higher weights to its character and contextual features. Experiments on OntoNotes 5.0 show that our model outperforms the baseline model by 2.7% absolute gain in F-score. In cross-genre experiments on five genres in OntoNotes, our model improves the performance for most genre pairs and obtains up to 5% absolute F-score gain.

Posted Content
TL;DR: In this paper, an expansion-based taxonomy construction framework, namely HiExpan, is proposed, which automatically generates key term list from the corpus and iteratively grows the seed taxonomy.
Abstract: Taxonomies are of great value to many knowledge-rich applications. As the manual taxonomy curation costs enormous human effects, automatic taxonomy construction is in great demand. However, most existing automatic taxonomy construction methods can only build hypernymy taxonomies wherein each edge is limited to expressing the "is-a" relation. Such a restriction limits their applicability to more diverse real-world tasks where the parent-child may carry different relations. In this paper, we aim to construct a task-guided taxonomy from a domain-specific corpus and allow users to input a "seed" taxonomy, serving as the task guidance. We propose an expansion-based taxonomy construction framework, namely HiExpan, which automatically generates key term list from the corpus and iteratively grows the seed taxonomy. Specifically, HiExpan views all children under each taxonomy node forming a coherent set and builds the taxonomy by recursively expanding all these sets. Furthermore, HiExpan incorporates a weakly-supervised relation extraction module to extract the initial children of a newly-expanded node and adjusts the taxonomy tree by optimizing its global structure. Our experiments on three real datasets from different domains demonstrate the effectiveness of HiExpan for building task-guided taxonomies.

Journal ArticleDOI
17 Jul 2019
TL;DR: Zhang et al. as mentioned in this paper proposed a set-instance classifier that jointly learns how to represent a permutation invariant synonym set and whether to include a new instance (i.e., a term) into the set.
Abstract: Mining entity synonym sets (i.e., sets of terms referring to the same entity) is an important task for many entity-leveraging applications. Previous work either rank terms based on their similarity to a given query term, or treats the problem as a two-phase task (i.e., detecting synonymy pairs, followed by organizing these pairs into synonym sets). However, these approaches fail to model the holistic semantics of a set and suffer from the error propagation issue. Here we propose a new framework, named SynSetMine, that efficiently generates entity synonym sets from a given vocabulary, using example sets from external knowledge bases as distant supervision. SynSetMine consists of two novel modules: (1) a set-instance classifier that jointly learns how to represent a permutation invariant synonym set and whether to include a new instance (i.e., a term) into the set, and (2) a set generation algorithm that enumerates the vocabulary only once and applies the learned set-instance classifier to detect all entity synonym sets in it. Experiments on three real datasets from different domains demonstrate both effectiveness and efficiency of SynSetMine for mining entity synonym sets.

Proceedings ArticleDOI
TL;DR: In this article, a Short-Time Fourier Neural Network (STFNet) is proposed to synthesize features inspired not only by the biology of human perception but also by the fundamental nature of physics.
Abstract: Recent advances in deep learning motivate the use of deep neural networks in Internet-of-Things (IoT) applications. These networks are modelled after signal processing in the human brain, thereby leading to significant advantages at perceptual tasks such as vision and speech recognition. IoT applications, however, often measure physical phenomena, where the underlying physics (such as inertia, wireless signal propagation, or the natural frequency of oscillation) are fundamentally a function of signal frequencies, offering better features in the frequency domain. This observation leads to a fundamental question: For IoT applications, can one develop a new brand of neural network structures that synthesize features inspired not only by the biology of human perception but also by the fundamental nature of physics? Hence, in this paper, instead of using conventional building blocks (e.g., convolutional and recurrent layers), we propose a new foundational neural network building block, the Short-Time Fourier Neural Network (STFNet). It integrates a widely-used time-frequency analysis method, the Short-Time Fourier Transform, into data processing to learn features directly in the frequency domain, where the physics of underlying phenomena leave better foot-prints. STFNets bring additional flexibility to time-frequency analysis by offering novel nonlinear learnable operations that are spectral-compatible. Moreover, STFNets show that transforming signals to a domain that is more connected to the underlying physics greatly simplifies the learning process. We demonstrate the effectiveness of STFNets with extensive experiments. STFNets significantly outperform the state-of-the-art deep learning models in all experiments. A STFNet, therefore, demonstrates superior capability as the fundamental building block of deep neural networks for IoT applications for various sensor inputs.

Proceedings ArticleDOI
03 Nov 2019
TL;DR: TaPeng et al. as mentioned in this paper proposed a task-guided pair embedding framework in heterogeneous network, which directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification).
Abstract: Many real-world tasks solved by heterogeneous network embedding methods can be cast as modeling the likelihood of a pairwise relationship between two nodes. For example, the goal of author identification task is to model the likelihood of a paper being written by an author (paper-author pairwise relationship). Existing taskguided embedding methods are node-centric in that they simply measure the similarity between the node embeddings to compute the likelihood of a pairwise relationship between two nodes. However, we claim that for task-guided embeddings, it is crucial to focus on directly modeling the pairwise relationship. In this paper, we propose a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification). To this end, we 1) propose to learn a pair embedding under the guidance of its associated context path, i.e., a sequence of nodes between the pair, and 2) devise the pair validity classifier to distinguish whether the pair is valid with respect to the specific task at hand. By introducing pair embeddings that capture the semantics behind the pairwise relationships, we are able to learn the fine-grained pairwise relationship between two nodes, which is paramount for task-guided embedding methods. Extensive experiments on author identification task demonstrate that TaPEm outperforms the state-of-the-art methods, especially for authors with few publication records.

Proceedings ArticleDOI
03 Nov 2019
TL;DR: HyperMine as mentioned in this paper extends the definition of context to the scenario of text-rich HINs and proposes to discover hypernymy in text rich heterogeneous information networks, which can introduce additional high-quality signals.
Abstract: Text-rich heterogeneous information networks (text-rich HINs) are ubiquitous in real-world applications. Hypernymy, also known as is-a relation or subclass-of relation, lays in the core of many knowledge graphs and benefits many downstream applications. Existing methods of hypernymy discovery either leverage textual patterns to extract explicitly mentioned hypernym-hyponym pairs, or learn a distributional representation for each term of interest based its context. These approaches rely on statistical signals from the textual corpus, and their effectiveness would therefore be hindered when the signals from the corpus are not sufficient for all terms of interest. In this work, we propose to discover hypernymy in text-rich HINs, which can introduce additional high-quality signals. We develop a new framework, named HyperMine, that exploits multi-granular contexts and combines signals from both text and network without human labeled data. HyperMine extends the definition of "context" to the scenario of text-rich HIN. For example, we can define typed nodes and communities as contexts. These contexts encode signals of different granularities and we feed them into a hypernymy inference model. HyperMine learns this model using weak supervision acquired based on high-precision textual patterns. Extensive experiments on two large real-world datasets demonstrate the effectiveness of HyperMine and the utility of modeling context granularity. We further show a case study that a high-quality taxonomy can be generated solely based on the hypernymy discovered by HyperMine.

Posted Content
TL;DR: This paper demonstrates that facet-aware evaluation manifests better correlation with human judgment than ROUGE, enables fine-grained evaluation as well as comparative analysis, and reveals valuable insights of state-of-the-art summarization methods.
Abstract: Commonly adopted metrics for extractive summarization focus on lexical overlap at the token level. In this paper, we present a facet-aware evaluation setup for better assessment of the information coverage in extracted summaries. Specifically, we treat each sentence in the reference summary as a \textit{facet}, identify the sentences in the document that express the semantics of each facet as \textit{support sentences} of the facet, and automatically evaluate extractive summarization methods by comparing the indices of extracted sentences and support sentences of all the facets in the reference summary. To facilitate this new evaluation setup, we construct an extractive version of the CNN/Daily Mail dataset and perform a thorough quantitative investigation, through which we demonstrate that facet-aware evaluation manifests better correlation with human judgment than ROUGE, enables fine-grained evaluation as well as comparative analysis, and reveals valuable insights of state-of-the-art summarization methods. Data can be found at this https URL.

Proceedings ArticleDOI
01 Nov 2019
TL;DR: Neural Embedding Propagation (NEP) as mentioned in this paper uses distributed embeddings to represent objects and dynamically composed modular networks to model their complex interactions, which is more powerful in its natural awareness of different types of objects and links.
Abstract: Classification is one of the most important problems in machine learning. To address label scarcity, semi-supervised learning (SSL) has been intensively studied over the past two decades, which mainly leverages data affinity modeled by networks. Label propagation (LP), however, as the most popular SSL technique, mostly only works on homogeneous networks with single-typed simple interactions. In this work, we focus on the more general and powerful heterogeneous networks, which accommodate multi-typed objects and links, and thus endure multi-typed complex interactions. Specifically, we propose neural embedding propagation (NEP), which leverages distributed embeddings to represent objects and dynamically composed modular networks to model their complex interactions. While generalizing LP as a simple instance, NEP is far more powerful in its natural awareness of different types of objects and links, and the ability to automatically capture their important interaction patterns. Further, we develop a series of efficient training strategies for NEP, leading to its easy deployment on real-world heterogeneous networks with millions of objects. With extensive experiments on three datasets, we comprehensively demonstrate the effectiveness, efficiency, and robustness of NEP compared with state-of-the-art network embedding and SSL algorithms.

Posted Content
TL;DR: This work proposes neural embedding propagation (NEP), which leverages distributed embeddings to represent objects and dynamically composed modular networks to model their complex interactions, and comprehensively demonstrates the effectiveness, efficiency, and robustness of NEP compared with state-of-the-art network embedding and SSL algorithms.
Abstract: Classification is one of the most important problems in machine learning. To address label scarcity, semi-supervised learning (SSL) has been intensively studied over the past two decades, which mainly leverages data affinity modeled by networks. Label propagation (LP), however, as the most popular SSL technique, mostly only works on homogeneous networks with single-typed simple interactions. In this work, we focus on the more general and powerful heterogeneous networks, which accommodate multi-typed objects and links, and thus endure multi-typed complex interactions. Specifically, we propose \textit{neural embedding propagation} (NEP), which leverages distributed embeddings to represent objects and dynamically composed modular networks to model their complex interactions. While generalizing LP as a simple instance, NEP is far more powerful in its natural awareness of different types of objects and links, and the ability to automatically capture their important interaction patterns. Further, we develop a series of efficient training strategies for NEP, leading to its easy deployment on real-world heterogeneous networks with millions of objects. With extensive experiments on three datasets, we comprehensively demonstrate the effectiveness, efficiency, and robustness of NEP compared with state-of-the-art network embedding and SSL algorithms.

Proceedings ArticleDOI
01 Aug 2019
TL;DR: This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com and observes that representation learning modules can significantly boost the performance but requires a proper pre-processing and the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data.
Abstract: This paper presents the winning solution to the Arabic Named Entity Recognition challenge run by Topcoder.com. The proposed model integrates various tailored techniques together, including representation learning, feature engineering, sequence labeling, and ensemble learning. The final model achieves a test F_1 score of 75.82% on the AQMAR dataset and outperforms baselines by a large margin. Detailed analyses are conducted to reveal both its strengths and limitations. Specifically, we observe that (1) representation learning modules can significantly boost the performance but requires a proper pre-processing and (2) the resulting embedding can be further enhanced with feature engineering due to the limited size of the training data. All implementations and pre-trained models are made public.

Posted ContentDOI
19 May 2019-bioRxiv
TL;DR: KnowEnG, a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery, is presented and its potential value in democratization of advanced tools for the modern genomics era is demonstrated.
Abstract: We present KnowEnG, a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks such as gene prioritization, sample clustering, gene set analysis and expression signature analysis. The system offers ‘knowledge-guided’ data-mining and machine learning algorithms, where user-provided data are analyzed in light of prior information about genes, aggregated from numerous knowledge-bases and encoded in a massive ‘Knowledge Network’. KnowEnG adheres to ‘FAIR’ principles: its tools are easily portable to diverse computing environments, run on the cloud for scalable and cost-effective execution of compute-intensive and data-intensive algorithms, and are interoperable with other computing platforms. They are made available through multiple access modes including a web-portal, and include specialized visualization modules. We present use cases and re-analysis of published cancer data sets using KnowEnG tools and demonstrate its potential value in democratization of advanced tools for the modern genomics era.

Proceedings ArticleDOI
13 May 2019
TL;DR: Zhang et al. as discussed by the authors take the anonymous place graph from Facebook as an example to systematically study the problem of place deduplication: they carefully formulate the problem, study its connections to various related tasks, and arrive at a systematic two-step data-driven pipeline based on place embedding with multiple novel techniques.
Abstract: Thanks to the advancing mobile location services, people nowadays can post about places to share visiting experience on-the-go. A large place graph not only helps users explore interesting destinations, but also provides opportunities for understanding and modeling the real world. To improve coverage and flexibility of the place graph, many platforms import places data from multiple sources, which unfortunately leads to the emergence of numerous duplicated places that severely hinder subsequent location-related services. In this work, we take the anonymous place graph from Facebook as an example to systematically study the problem of place deduplication: We carefully formulate the problem, study its connections to various related tasks that lead to several promising basic models, and arrive at a systematic two-step data-driven pipeline based on place embedding with multiple novel techniques that works significantly better than the state-of-the-art.

Posted Content
TL;DR: In this paper, the authors combine continuous reinforcement learning and deep content embedding into a novel semi-supervised joint learning framework, where the supervised reinforcement learning component explores useful paths between a small set of example similar pairs of nodes, while the unsupervised deep embedding component captures node contents.
Abstract: Heterogeneous networks are widely used to model real-world semi-structured data. The key challenge of learning over such networks is the modeling of node similarity under both network structures and contents. To deal with network structures, most existing works assume a given or enumerable set of meta-paths and then leverage them for the computation of meta-path-based proximities or network embeddings. However, expert knowledge for given meta-paths is not always available, and as the length of considered meta-paths increases, the number of possible paths grows exponentially, which makes the path searching process very costly. On the other hand, while there are often rich contents around network nodes, they have hardly been leveraged to further improve similarity modeling. In this work, to properly model node similarity in content-rich heterogeneous networks, we propose to automatically discover useful paths for pairs of nodes under both structural and content information. To this end, we combine continuous reinforcement learning and deep content embedding into a novel semi-supervised joint learning framework. Specifically, the supervised reinforcement learning component explores useful paths between a small set of example similar pairs of nodes, while the unsupervised deep embedding component captures node contents and enables inductive learning on the whole network. The two components are jointly trained in a closed loop to mutually enhance each other. Extensive experiments on three real-world heterogeneous networks demonstrate the supreme advantages of our algorithm.

Posted Content
TL;DR: This paper proposes a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification).
Abstract: Many real-world tasks solved by heterogeneous network embedding methods can be cast as modeling the likelihood of pairwise relationship between two nodes. For example, the goal of author identification task is to model the likelihood of a paper being written by an author (paper-author pairwise relationship). Existing task-guided embedding methods are node-centric in that they simply measure the similarity between the node embeddings to compute the likelihood of a pairwise relationship between two nodes. However, we claim that for task-guided embeddings, it is crucial to focus on directly modeling the pairwise relationship. In this paper, we propose a novel task-guided pair embedding framework in heterogeneous network, called TaPEm, that directly models the relationship between a pair of nodes that are related to a specific task (e.g., paper-author relationship in author identification). To this end, we 1) propose to learn a pair embedding under the guidance of its associated context path, i.e., a sequence of nodes between the pair, and 2) devise the pair validity classifier to distinguish whether the pair is valid with respect to the specific task at hand. By introducing pair embeddings that capture the semantics behind the pairwise relationships, we are able to learn the fine-grained pairwise relationship between two nodes, which is paramount for task-guided embedding methods. Extensive experiments on author identification task demonstrate that TaPEm outperforms the state-of-the-art methods, especially for authors with few publication records.