scispace - formally typeset
J

Jonathan W. Simons

Researcher at Prostate Cancer Foundation

Publications -  139
Citations -  24219

Jonathan W. Simons is an academic researcher from Prostate Cancer Foundation. The author has contributed to research in topics: Prostate cancer & Cancer. The author has an hindex of 54, co-authored 139 publications receiving 23331 citations. Previous affiliations of Jonathan W. Simons include Johns Hopkins University School of Medicine & Emory University.

Papers
More filters
Journal Article

Overexpression of Hypoxia-inducible Factor 1α in Common Human Cancers and Their Metastases

TL;DR: The first clinical data indicating that HIF-1alpha may play an important role in human cancer progression are provided, indicating adaptations to a hypoxic microenvironment that are correlated with tumor invasion, metastasis, and lethality.
Journal ArticleDOI

Identification of a chromosome 18q gene that is altered in colorectal cancers

TL;DR: A contiguous stretch of DNA comprising 370 kilobase pairs has now been cloned from a region of chromosome 18q suspected to reside near the DCC gene, which may play a role in the pathogenesis of human colorectal neoplasia, perhaps through alteration of the normal cell-cell interactions controlling growth.
Journal Article

Modulation of Hypoxia-inducible Factor 1α Expression by the Epidermal Growth Factor/Phosphatidylinositol 3-Kinase/PTEN/AKT/FRAP Pathway in Human Prostate Cancer Cells: Implications for Tumor Angiogenesis and Therapeutics

TL;DR: It is demonstrated that in human prostate cancer cells, basal-, growth factor- and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor Hif-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively.
Journal ArticleDOI

The genomic complexity of primary human prostate cancer

TL;DR: In this paper, the authors presented the complete sequence of seven primary human prostate cancers and their paired normal counterparts and revealed previously unknown balanced rearrangements, at which multiple intra-and inter-chromosomal loci exchange their breakpoint arms without any loss of genetic material.
Journal ArticleDOI

In vivo molecular and cellular imaging with quantum dots.

TL;DR: A new structural design involves encapsulating luminescent QDs with amphiphilic block copolymers and linking the polymer coating to tumor-targeting ligands and drug delivery functionalities, which raised new possibilities for ultrasensitive and multiplexed imaging of molecular targets in living cells, animal models and possibly in humans.