scispace - formally typeset
G

Gregg L. Semenza

Researcher at Johns Hopkins University School of Medicine

Publications -  524
Citations -  143292

Gregg L. Semenza is an academic researcher from Johns Hopkins University School of Medicine. The author has contributed to research in topics: Hypoxia (medical) & Transcription factor. The author has an hindex of 168, co-authored 502 publications receiving 130316 citations. Previous affiliations of Gregg L. Semenza include Max Delbrück Center for Molecular Medicine & University of Maryland, Baltimore.

Papers
More filters
Journal ArticleDOI

Targeting HIF-1 for cancer therapy

TL;DR: Hypoxia-inducible factor 1 (HIF-1) activates the transcription of genes that are involved in crucial aspects of cancer biology, including angiogenesis, cell survival, glucose metabolism and invasion.
Journal ArticleDOI

Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension

TL;DR: Hypoxia-inducible factor 1 (HIF-1) is found in mammalian cells cultured under reduced O2 tension and is necessary for transcriptional activation mediated by the erythropoietin gene enhancer in hypoxic cells.
Journal ArticleDOI

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

Daniel J. Klionsky, +2522 more
- 21 Jan 2016 - 
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Journal ArticleDOI

Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

TL;DR: HIF-1 is implicate in the activation of VEGF transcription in hypoxic cells and this work demonstrates the involvement of Hif-1 in theactivation of V EGF transcription.
Journal ArticleDOI

HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia

TL;DR: A hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production is revealed.