scispace - formally typeset
Search or ask a question

Showing papers by "Kang-Kuen Ni published in 2010"


Journal ArticleDOI
12 Feb 2010-Science
TL;DR: Experimental evidence for exothermic atom-exchange chemical reactions is reported, starting with an optically trapped near–quantum-degenerate gas of polar 40K87Rb molecules prepared in their absolute ground state.
Abstract: How does a chemical reaction proceed at ultralow temperatures? Can simple quantum mechanical rules such as quantum statistics, single partial-wave scattering, and quantum threshold laws provide a clear understanding of the molecular reactivity under a vanishing collision energy? Starting with an optically trapped near-quantum-degenerate gas of polar 40K87Rb molecules prepared in their absolute ground state, we report experimental evidence for exothermic atom-exchange chemical reactions. When these fermionic molecules were prepared in a single quantum state at a temperature of a few hundred nanokelvin, we observed p-wave-dominated quantum threshold collisions arising from tunneling through an angular momentum barrier followed by a short-range chemical reaction with a probability near unity. When these molecules were prepared in two different internal states or when molecules and atoms were brought together, the reaction rates were enhanced by a factor of 10 to 100 as a result of s-wave scattering, which does not have a centrifugal barrier. The measured rates agree with predicted universal loss rates related to the two-body van der Waals length.

757 citations


Journal ArticleDOI
29 Apr 2010-Nature
TL;DR: It is shown how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules, and how this dependence can be understood in a relatively simple model based on quantum threshold laws for the scattering of fermionic polar molecules.
Abstract: Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range and spatially anisotropic. Here, dipolar collisions in an ultracold gas of fermionic potassium–rubidium molecules have been experimentally observed. The results show how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold gas of polar molecules.

467 citations


Journal ArticleDOI
TL;DR: This work reports the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state, and provides a crucial step towards full control over molecular quantum gases.
Abstract: We report the preparation of a rovibronic ground-state molecular quantum gas in a single hyperfine state and, in particular, the absolute lowest quantum state. This addresses the last internal degree of freedom remaining after the recent production of a near quantum degenerate gas of molecules in their rovibronic ground state, and provides a crucial step towards full control over molecular quantum gases. We demonstrate a scheme that is general for bialkali polar molecules and allows the preparation of molecules in a single hyperfine state or in an arbitrary coherent superposition of hyperfine states. The scheme relies on electric-dipole, two-photon microwave transitions through rotationally excited states and makes use of electric nuclear quadrupole interactions to transfer molecular population between different hyperfine states.

198 citations


Journal ArticleDOI
TL;DR: In this article, a photon-shot-noise-limited absorption imaging on a strong but open bound-bound molecular transition was proposed to determine momentum and spatial distributions for a ground-state polar gas near quantum degeneracy.
Abstract: We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. Imaging molecules without closed optical cycling transitions is challenging. Our technique relies on photon-shot-noise-limited absorption imaging on a strong but open bound-bound molecular transition. We present a systematic characterization of this imaging technique. Using this technique combined with time-of-flight expansion, we demonstrate the capability to determine momentum and spatial distributions for the molecular gas. With its capability of imaging molecules in arbitrary external fields, we anticipate that this technique will find many applications in the study of molecular quantum gases.

66 citations


Posted Content
TL;DR: In this paper, the authors proposed a new class of optical forces to "trap" and stiffen the motion of a tethered mechanical structure, thereby freeing the resultant mechanical frequencies and decoherence rates from underlying material properties.
Abstract: Rapid advances are being made toward optically cooling a single mode of a micro-mechanical system to its quantum ground state and observing quantum behavior at macroscopic scales. Reaching this regime in room-temperature environments requires a stringent condition on the mechanical quality factor $Q_m$ and frequency $f_m$, $Q_{m}f_{m}{\gtrsim}k_{B}T_{bath}/h$, which so far has been marginally satisfied only in a small number of systems. Here we propose and analyze a new class of systems that should enable unprecedented $Q_{m}f_m$ values. The technique is based upon using optical forces to "trap" and stiffen the motion of a tethered mechanical structure, thereby freeing the resultant mechanical frequencies and decoherence rates from underlying material properties.

39 citations