scispace - formally typeset
J

Jun Ye

Researcher at National Institute of Standards and Technology

Publications -  834
Citations -  53267

Jun Ye is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Laser & Frequency comb. The author has an hindex of 111, co-authored 779 publications receiving 46056 citations. Previous affiliations of Jun Ye include Max Planck Society & JILA.

Papers
More filters
Journal ArticleDOI

A High Phase-Space-Density Gas of Polar Molecules

TL;DR: An ultracold dense gas of potassium-rubidium (40K87Rb) polar molecules is created using a single step of STIRAP with two-frequency laser irradiation to coherently transfer extremely weakly bound KRb molecules to the rovibrational ground state of either the triplet or the singlet electronic ground molecular potential.
Journal ArticleDOI

Optical atomic clocks

TL;DR: In this article, the authors review the spectacular accuracy and stability gains that can be obtained when working with laser cooled ions or neutral atoms and discuss some important applications of these optical clocks, from geodesy to tests of fundamental theories to many body physics.
Journal ArticleDOI

Cold and ultracold molecules: science, technology and applications

TL;DR: A review of the current state of the art in the research field of cold and ultracold molecules can be found in this paper, where a discussion is based on recent experimental and theoretical work and concludes with a summary of anticipated future directions and open questions in rapidly expanding research field.
Journal ArticleDOI

Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb

TL;DR: A great simplification in the long-standing problem of measuring optical frequencies in terms of the cesium primary standard is demonstrated, enabling us to measure the 282 THz frequency of an iodine-stabilized Nd:YAG laser directly in Terms of the microwave frequency that controls the comb spacing.
Journal ArticleDOI

Colloquium: Femtosecond optical frequency combs

TL;DR: In this paper, the authors review the frequency-domain description of a mode-locked laser and the connection between the pulse phase and the frequency spectrum in order to provide a basis for understanding how the absolute frequencies can be determined and controlled.