scispace - formally typeset
K

Kenton Lee

Researcher at Google

Publications -  64
Citations -  71768

Kenton Lee is an academic researcher from Google. The author has contributed to research in topics: Question answering & Language model. The author has an hindex of 33, co-authored 64 publications receiving 42170 citations. Previous affiliations of Kenton Lee include University of Pennsylvania & University of Washington.

Papers
More filters
Posted Content

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: A new language representation model, BERT, designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Proceedings ArticleDOI

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

TL;DR: BERT as mentioned in this paper pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers, which can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks.
Proceedings ArticleDOI

Deep contextualized word representations

TL;DR: This paper introduced a new type of deep contextualized word representation that models both complex characteristics of word use (e.g., syntax and semantics), and how these uses vary across linguistic contexts (i.e., to model polysemy).
Posted Content

Deep contextualized word representations

TL;DR: This article introduced a new type of deep contextualized word representation that models both complex characteristics of word use (e.g., syntax and semantics), and how these uses vary across linguistic contexts (i.e., to model polysemy).
Journal ArticleDOI

Natural Questions: A Benchmark for Question Answering Research

TL;DR: The Natural Questions corpus, a question answering data set, is presented, introducing robust metrics for the purposes of evaluating question answering systems; demonstrating high human upper bounds on these metrics; and establishing baseline results using competitive methods drawn from related literature.